Defect properties of neutron irradiated Fe-Cr-C alloys and their influence on the mechanical behavior are studied by combining mechanical tests, microstructural examination, and the results of models. It is found that the initial microstructure of these alloys, determined by the Cr and C concentrations, as well as by the thermal treatment, can account for different defect formation and distribution after neutron irradiation. On the basis of these results, a correlation between defect properties and macroscopic mechanical behavior is proposed.
High chromium ( 9-12 wt %) ferritic/martensitic steels are candidate structural materials for future fusion reactors and other advanced systems such as accelerator driven systems ADS). Their use for these applications requires a careful assessment of their mechanical stability under high energy neutron irradiation and in aggressive environments. In particular, the Cr concentration has been shown to be a key parameter to be optimized in order to guarantee the best corrosion and swelling resistance, together with the least embrittlement. In this work, the characterization of the neutron irradiated Fe-Cr model alloys with different Cr % with respect to microstructure and mechanical tests will be presented. The behavior of Fe-Cr alloys have been studied using tensile tests at different temperature range ( from -160°C to 300°C). Irradiation-induced microstructure changes have been studied by TEM for two different irradiation doses at 300°. The density and the size distribution of the defects induced have been determined. The tensile test results indicate that Cr content affects the hardening behavior of Fe-Cr binary alloys. Hardening mechanisms are discussed in terms of Orowan type of approach by correlating TEM data to the measured irradiation hardening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.