Background: Persistent anterolateral rotatory laxity after anterior cruciate ligament (ACL) reconstruction (ACLR) has been correlated with poor clinical outcomes and graft failure. Hypothesis: We hypothesized that a single-bundle, hamstring ACLR in combination with a lateral extra-articular tenodesis (LET) would reduce the risk of ACLR failure in young, active individuals. Study Design: Randomized controlled trial; Level of evidence, 1. Methods: This is a multicenter, prospective, randomized clinical trial comparing a single-bundle, hamstring tendon ACLR with or without LET performed using a strip of iliotibial band. Patients 25 years or younger with an ACL-deficient knee were included and also had to meet at least 2 of the following 3 criteria: (1) grade 2 pivot shift or greater, (2) a desire to return to high-risk/pivoting sports, (3) and generalized ligamentous laxity (GLL). The primary outcome was ACLR clinical failure, a composite measure of rotatory laxity or a graft rupture. Secondary outcome measures included the P4 pain scale, Marx Activity Rating Scale, Knee injury Osteoarthritis and Outcome Score (KOOS), International Knee Documentation Committee score, and ACL Quality of Life Questionnaire. Patients were reviewed at 3, 6, 12, and 24 months postoperatively. Results: A total of 618 patients (297 males; 48%) with a mean age of 18.9 years (range, 14-25 years) were randomized. A total of 436 (87.9%) patients presented preoperatively with high-grade rotatory laxity (grade 2 pivot shift or greater), and 215 (42.1%) were diagnosed as having GLL. There were 18 patients lost to follow-up and 11 who withdrew (~5%). In the ACLR group, 120/298 (40%) patients sustained the primary outcome of clinical failure, compared with 72/291 (25%) in the ACLR+LET group (relative risk reduction [RRR], 0.38; 95% CI, 0.21-0.52; P < .0001). A total of 45 patients experienced graft rupture, 34/298 (11%) in the ACLR group compared with 11/291 (4%) in the ACL+LET group (RRR, 0.67; 95% CI, 0.36-0.83; P < .001). The number needed to treat with LET to prevent 1 patient from graft rupture was 14.3 over the first 2 postoperative years. At 3 months, patients in the ACLR group had less pain as measured by the P4 ( P = .003) and KOOS ( P = .007), with KOOS pain persisting in favor of the ACLR group to 6 months ( P = .02). No clinically important differences in patient-reported outcome measures were found between groups at other time points. The level of sports activity was similar between groups at 2 years after surgery, as measured by the Marx Activity Rating Scale ( P = .11). Conclusion: The addition of LET to a single-bundle hamstring tendon autograft ACLR in young patients at high risk of failure results in a statistically significant, clinically relevant reduction in graft rupture and persistent rotatory laxity at 2 years after surgery. Registration: NCT02018354 ( ClinicalTrials.gov identifier)
There is considerable interindividual variability in motor function among patients with Duchenne muscular dystrophy (DMD); moreover, pathogenetic mechanisms of motor dysfunction in DMD are not understood. Using multiparametric analysis, we correlated initial histologic alterations in quadriceps muscle biopsies from 25 steroid therapy-free patients with DMD with 13 relevant clinical features assessed by a single clinical team during a long-term period (mean, >10 years). There was no residual muscle dystrophin by immunohistochemistry and Western blot analysis in the biopsies. Myofiber size, hypercontracted fibers, necrotic/basophilic fibers, endomysial and perimysial fibrosis, and fatty degeneration were assessed by morphometry. Endomysial fibrosis was the only myopathologic parameter that significantly correlated with poor motor outcome as assessed by quadriceps muscle strength, manual muscle testing of upper and lower limbs at 10 years, and age at ambulation loss (all p<0.002). Motor outcome and fibrosis did not correlate with genotype. Myofibers exhibited oxidative stress-induced protein alterations and became separated from capillaries by fibrosis that was associated with both increase of CD206+ alternatively activated macrophages and a relative decrease of CD56+ satellite cells (both p<0.0001). This study provides a strong rationale for antifibrotic therapeutic strategies in DMD and supports the view that alternatively activated macrophages that are known to inhibit myogenesis while promoting cellular collagen production play a key role in myofibrosis.
Primary adhalin (or alpha-sarcoglycan) deficiency due to a defect of the adhalin gene localized on chromosome 17q21 causes an autosomal recessive myopathy. We evaluated 20 patients from 15 families (12 from Europe and three from North Africa) with a primary adhalin deficiency with two objectives: characterization of the clinical phenotype and analysis of the correlation with the level of adhalin expression and the type of gene mutation. Age at onset and severity of the myopathy were heterogeneous: six patients were wheel-chair bound before 15 years of age, whereas five other patients had mild disease with preserved ambulation in adulthood. The clinical pattern was similar in all the patients with symmetric characteristic involvement of trunk and limb muscles, calf hypertrophy, and absence of cardiac dysfunction. Immunofluorescence and immunoblot studies of muscle biopsy specimens showed a large variation in the expression of adhalin. The degree of adhalin deficiency was fairly correlated with the clinical severity. There were 15 different mutations (10 missense, five null). Double null mutations (three patients) were associated with severe myopathy, but in the other cases (null/missense and double missense) there was a large variation in the severity of the disease.
Prostate cancer is the second most frequently diagnosed cancer in the world. Localized disease can be effectively treated with radiation therapy or radical prostatectomy. However, advanced prostate cancer is more difficult to treat and if metastatic, is incurable. There is a need for more effective therapy for advanced prostate cancer. One potential target is the cancer stem cell (CSC). CSCs have been described in several solid tumors, including prostate cancer, and contribute to therapeutic resistance and tumor recurrence. Metformin, a common oral biguanide used to treat type 2 diabetes, has been demonstrated to have anti-neoplastic effects. Specifically, metformin targets CSCs in breast cancer, pancreatic cancer, glioblastoma and colon cancer. Metformin acts directly on the mitochondria to inhibit oxidative phosphorylation and reduce mitochondrial ATP production. This forces tumor cells to compensate by increasing the rate of glycolysis. CSCs rely heavily on mitochondrial oxidative phosphorylation for energy production. The glycolytic switch results in an energy crisis in these cells. Metformin could be used to exploit this metabolic weakness in CSCs. This would increase CSC sensitivity to conventional cancer therapies, circumventing treatment resistance and enhancing treatment efficacy. This review will explore the characteristics of prostate CSCs, their role in tumor propagation and therapeutic resistance and the role of metformin as a potential prostate CSC sensitizer to current anticancer therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.