We report on time-modulated two-body weak decays observed in the orbital electron capture of hydrogenlike 140 Pr 59+ and 142 Pm 60+ ions coasting in an ion storage ring. Using non-destructive single ion, time-resolved Schottky mass spectrometry we found that the expected exponential decay is modulated in time with a modulation period of about 7 seconds for both systems. Tentatively this observation is attributed to the coherent superposition of finite mass eigenstates of the electron neutrinos from the weak decay into a two-body final state.
The mass of an atom incorporates all its constituents and their interactions. The difference between the mass of an atom and the sum of its building blocks (the binding energy) is a manifestation of Einstein's famous relation E = mc(2). The binding energy determines the energy available for nuclear reactions and decays (and thus the creation of elements by stellar nucleosynthesis), and holds the key to the fundamental question of how heavy the elements can be. Superheavy elements have been observed in challenging production experiments, but our present knowledge of the binding energy of these nuclides is based only on the detection of their decay products. The reconstruction from extended decay chains introduces uncertainties that render the interpretation difficult. Here we report direct mass measurements of trans-uranium nuclides. Located at the farthest tip of the actinide species on the proton number-neutron number diagram, these nuclides represent the gateway to the predicted island of stability. In particular, we have determined the mass values of (252-254)No (atomic number 102) with the Penning trap mass spectrometer SHIPTRAP. The uncertainties are of the order of 10 keV/c(2) (representing a relative precision of 0.05 p.p.m.), despite minute production rates of less than one atom per second. Our experiments advance direct mass measurements by ten atomic numbers with no loss in accuracy, and provide reliable anchor points en route to the island of stability.
The sub-barrier fusion excitation function of 40Ca + 96Zr has been measured down to cross sections ≃2.4 μb, i.e. two orders of magnitude smaller than obtained in a previous experiment, where the subbarrier fusion of this system was found to be greatly enhanced with respect to 40Ca + 90Zr, and the need of coupling to transfer channels was suggested relying on coupled-channels calculations. The purpose of this work has been to investigate the behavior of 40Ca + 96Zr fusion far below the barrier, thereby disentangling the elusive interplay of effects due to inelastic couplings, transfer couplings and, possibly, the appearance of the fusion hindrance. The smooth trend of the excitation function has been found to continue, and the logarithmic slope increases very slowly. No indication of hindrance shows up, and a comparison with 40Ca + 96 is illuminating in this respect. A new CC analysis of the complete excitation function has been performed, including explicitly one- and two-nucleon Q > 0 transfer channels. Such transfer couplings bring significant cross section enhancements, even at the level of a few μb. Locating the hindrance threshold, if any, in 40Ca + 96 would require challenging measurements of cross sections in the sub-μb range
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.