Although poor oral health influences the occurrence of pulmonary infection in elderly people, it is unclear how the degree of oral health is linked to mortality from pulmonary infection. Therefore, we evaluated the relationship between oral health and four-year mortality from pneumonia in an elderly Japanese population. The study population consisted of 697 (277 males, 420 females) of the 1282 individuals who were 80 years old in 1997. Data on oral and systemic health were obtained by means of questionnaires, physical examinations, and laboratory blood tests. One hundred eight of the study persons died between 1998 and 2002. Of these, 22 deaths were due to pneumonia. The adjusted mortality due to pneumonia was 3.9 times higher in persons with 10 or more teeth with a probing depth exceeding 4 mm (periodontal pocket) than in those without periodontal pockets. Therefore, the increase in teeth with periodontal pockets in the elderly may be associated with increased mortality from pneumonia.
Streptococcus mutans has been strongly implicated as the principal etiological agent in dental caries. One of the important virulence properties of these organisms is their ability to form biofilms known as dental plaque on tooth surfaces. Since the roles of sucrose and glucosyltransferases in S. mutans biofilm formation have been well documented, we focused our attention on sucrose-independent factors. We have initially identified several mutants that appear to be defective in biofilm formation on abiotic surfaces by an insertional inactivation mutagenesis strategy applied to S. mutans. A total of 27 biofilm-defective mutants were isolated and analyzed in this study. From these mutants, three genes were identified. One of the mutants was defective in the Bacillus subtilis lytR homologue. Another of the biofilm-defective mutants isolated was a yulF homologue, which encodes a hypothetical protein of B. subtilis whose function in biofilm formation is unknown. The vast majority of the mutants were defective in the comB gene required for competence. We therefore have constructed and examined comACDE null mutants. These mutants were also found to be attenuated in biofilm formation. Biofilm formation by several other regulatory gene mutants were also characterized using an in vitro biofilm-forming assay. These results suggest that competence genes as well as the sgp and dgk genes may play important roles in S. mutans biofilm formation.
The cross sections for single-neutron removal from the very neutron-rich nucleus 31Ne on Pb and C targets have been measured at 230 MeV/nucleon using the RIBF facility at RIKEN. The deduced large Coulomb breakup cross section of 540(70) mb is indicative of a soft E1 excitation. Comparison with direct-breakup model calculations suggests that the valence neutron of 31Ne occupies a low-l orbital (most probably 2p(3/2)) with a small separation energy (S(n) approximately < 0.8 MeV), instead of being predominantly in the 1f(7/2) orbital as expected from the conventional shell ordering. These findings suggest that 31Ne is the heaviest halo system known.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.