We generalize the analysis of the normal modes for a rotating ionic Coulomb crystal in a Penning trap to allow for inhomogenieites in the system. Our formal developments are completely general, but we choose to examine a crystal of Be + ions with BeH + defects to compare with current experimental efforts. We examine the classical phonon modes (both transverse and planar) and we determine the effective spin-spin interactions when the system is driven by an axial spin-dependent optical dipole force. We examine situations with up to approximately 15% defects. We find that most properties are not strongly influenced by the defects, indicating that the presence of a small number of defects will not significantly affect experiments.
The Coulomb repulsion between ions in a linear Paul trap gives rise to anharmonic terms in the potential energy when expanded about the equilibrium positions. We examine the effect of these anharmonic terms on the accuracy of a quantum simulator made from trapped ions. To be concrete, we consider a linear chain of Yb 171+ ions stabilized close to the zigzag transition. We find that for typical experimental temperatures, frequencies change by no more than a factor of 0.01% due to the anharmonic couplings. Furthermore, shifts in the effective spin-spin interactions (driven by a spin-dependent optical dipole force) are also, in general, less than 0.01% for detunings to the blue of the transverse center-of-mass frequency. However, detuning the spin interactions near other frequencies can lead to non-negligible anharmonic contributions to the effective spin-spin interactions. We also examine an odd behavior exhibited by the harmonic spin-spin interactions for a range of intermediate detunings, where nearest-neighbor spins with a larger spatial separation on the ion chain interact more strongly than nearest neighbors with a smaller spatial separation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.