Liver fibrosis results from the excessive secretion of matrix proteins by hepatic stellate cells (HSC), which proliferate during fibrotic liver injury. We have studied a model of spontaneous recovery from liver fibrosis to determine the biological mechanisms mediating resolution.Livers were harvested from rats at 0, 3, 7, and 28 d of spontaneous recovery from liver fibrosis induced by 4 wk of twice weekly intraperitoneal injections with CCl 4 . Hydroxyproline analysis and histology of liver sections indicated that the advanced septal fibrosis observed at time 0 (peak fibrosis) was remodeled over 28 d of recovery to levels close to control (untreated liver). ␣ -Smooth muscle actin staining of liver sections demonstrated a 12-fold reduction in the number of activated HSC over the same time period with evidence of HSC apoptosis. Ribonuclease protection analysis of liver RNA extracted at each recovery time point demonstrated a rapid decrease in expression of the collagenase inhibitors TIMP-1 and TIMP-2, whereas collagenase mRNA expression remained at levels comparable to peak fibrosis. Collagenase activity in liver homogenates increased through recovery.We suggest that apoptosis of activated HSC may vitally contribute to resolution of fibrosis by acting as a mechanism for removing the cell population responsible for both producing fibrotic neomatrix and protecting this matrix from degradation via their production of TIMPs.
Gut 2003;52:953-959 Background and aims: In HFE associated hereditary haemochromatosis, the duodenal enterocyte behaves as if iron deficient and previous reports have shown increased duodenal expression of divalent metal transporter 1 (DMT1) and iron regulated gene 1 (Ireg1) in affected subjects. In those studies, many patients had undergone venesection, which is a potent stimulus of iron absorption. Our study investigated duodenal expression of DMT1 (IRE and non-IRE), Ireg1, hephaestin, and duodenal cytochrome-b (Dyctb) in untreated C282Y homozygous haemochromatosis patients, iron deficient patients, and iron replete subjects. Methods: Total RNA was extracted from duodenal biopsies and expression of the iron transport genes was assessed by ribonuclease protection assay. Results: Expression of DMT1 (IRE) and Ireg1 was increased 3-5-fold in iron deficient subjects compared with iron replete subjects. Duodenal expression of DMT1 (IRE) and Ireg1 was similar in haemochromatosis patients and iron replete subjects but in haemochromatosis patients with elevated serum ferritin concentrations, both DMT1 (IRE) and Ireg1 expression were inappropriately increased relative to serum ferritin concentration. Hephaestin and Dcytb levels were not upregulated in haemochromatosis. DMT1 (IRE) and Ireg1 levels showed significant inverse correlations with serum ferritin concentration in each group of patients. Conclusions: These findings are consistent with DMT1 (IRE) and Ireg1 playing primary roles in the adaptive response to iron deficiency. Untreated haemochromatosis patients showed inappropriate increases in DMT1 (IRE) and Ireg1 expression for a given level of serum ferritin concentration, although the actual level of expression of these iron transport genes was not significantly different from that of normal subjects.
The proportion of detected subjects who commenced venesection was significant. Results suggest that clinical penetrance is higher in Australia than other countries and that even in the environment of a large tertiary teaching hospital, phenotypic screening identifies cases of hereditary haemochromatosis, which are likely to benefit from treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.