The objective of this experiment was to investigate the effect of restricting pasture access time on milk production and composition, body weight and body condition score change, dry matter intake, and grazing behavior of autumn calving dairy cows in midlactation. Fifty-two (19 primiparous and 33 multiparous) Holstein-Friesian dairy cows (mean calving date, August 17 +/- 91.2 d) were randomly assigned to a 4-treatment (n = 13) randomized block design grazing study. The 4 grazing treatments were: (i) full-time access to pasture (22H; control), (ii) 9-h access to pasture (9H), (iii) two 4.5-h periods of access to pasture after both milkings (2 x 4.5H), and (iv) two 3-h periods of access to pasture after both milkings (2 x 3H). Experimental treatments were imposed from March 7 to April 6, 2007 (31 d). The pregrazing herbage mass of swards offered to all treatments was 1,268 kg of dry matter/ha, and sward organic matter digestibility was 86.4%, indicating high-quality swards conducive to high dry matter intake. Swards where animals had 22H and 2 x 4.5H access to pasture had the lowest postgrazing sward heights (3.5 cm), reflecting the greatest levels of sward utilization. After the experimental period, there were no differences in milk production; however, the 2 x 3H animals tended to have lower milk protein concentration (-0.17%) compared with 22H animals. Furthermore, dry matter intake of the 9H animals was lower than 22H animals. Although restricting access time to pasture decreased grazing time, animals compensated by increasing their intake/minute and intake/bite. Restricting pasture access time resulted in much greater grazing efficiency, because the 9H, 2 x 4.5H, and 2 x 3H treatments spent a greater proportion of their time at pasture grazing (81, 81, and 96%, respectively) than 22H animals (42%). Results of this study indicate that allocating animals restricted access to pasture does not significantly affect milk production. This study also found that the total access time should be greater than 6 h and that perhaps needs to be divided into 2 periods.
The objective of this study was to determine the effect of daily herbage allowance (DHA) and concentrate level on milk production and dry matter intake of spring-calving dairy cows in early lactation. Seventy-two Holstein-Friesian dairy cows (mean calving date February 2) were randomly assigned across 6 treatments (n = 12) in a 2 x 3 factorial arrangement. The 6 treatments consisted of 2 DHA ( > 4 cm) and 3 concentrate levels: 13 kg of herbage dry matter/cow per d (low) or 17 kg of herbage dry matter/cow per d (high) DHA and unsupplemented, 3 kg, or 6 kg of dry matter concentrate/cow per d. The experimental period (period I) lasted 77 d and was followed by a carryover period (period II) during which animals were randomly reassigned across 2 grazing treatments offering 17 or 21 kg of herbage dry matter/cow per d. Increasing DHA significantly increased milk (+1.85 kg), solids-corrected milk, protein (+79.5 g), and lactose yields, protein concentration, and mean body weight (BW). Mean body condition score (BCS) and end-point BCS were also significantly higher with the high-DHA treatments. There was a linear response in milk yield, milk lactose concentration, and solids-corrected milk to concentrate supplementation. There was a significant difference in mean BW as concentrate increased from 0 to 3 kg (506 and 524 kg, respectively); there was no further increase in BW when 6 kg of concentrate was offered. Cows offered the low DHA had significantly lower grass dry matter intake (13.3 kg) and total dry matter intake (16.3 kg) than the high-DHA cows during period I. Concentrate supplementation significantly increased total dry matter intake. During period II, previous DHA continued to have a significant carryover effect on milk protein concentration, BW change, mean BCS, and end-point BCS. Concentrate supplementation during period I continued to have a significant carryover effect in period II on milk yield; milk fat, protein, and lactose yields; solids-corrected milk yield; BW; and mean BCS. Results from this study indicate that offering a medium level of DHA (17 kg of herbage dry matter) in early lactation will increase milk production. Offering concentrate will result in a linear increase in milk production. In an early spring feed-budgeting scenario, when grass supply is in deficit, offering 3 kg of dry matter concentrate with 17 kg of DHA has the additive effect of maintaining the grazing rotation at the target length as well as ensuring the herd is adequately fed.
This study compared the effects of different intervention approaches designed to promote peer-related social competence of young children with disabilities. Preschool-age children with disabilities who were enrolled in classes in Tennessee and Minnesota participated in four intervention conditions (environmental arrangements, child specific, peer mediated, and comprehensive) and a control (no intervention) condition. A performance-based assessment of social competence, which consisted of observational, teacher rating, and peer rating measures, was collected before and after the interventions and again the following school year. Analyses revealed that the peer-mediated condition had the greatest and most sustained effect on children's participation in social interaction and on the quality of interaction, with the child-specific condition also having a strong effect. The environmental arrangements condition had the strongest effect on peer ratings. These findings indicate that there are effective intervention approaches available for children who have needs related to social competence and that different types of interventions may be useful for addressing different goals (e.g., social skills or social acceptance) of individual children.
The objective of this study was to estimate genetic parameters for grass dry matter intake (DMI), energy balance (EB), and cow internal digestibility (IDG) in grazing Holstein-Friesian dairy cows. Grass DMI was estimated up to 4 times per lactation on 1,588 lactations from 755 cows on 2 research farms in southern Ireland. Simultaneously measured milk production and BW records were used to calculate EB. Cow IDG, measured as the ratio of feed and fecal concentrations of the natural odd carbon-chain n-alkane pentatriacontane, was available on 583 lactations from 238 cows. Random regression and multitrait animal models were used to estimate residual, additive genetic and permanent environmental (co)variances across lactations. Results were similar for both models. Heritability for DMI, EB, and IDG across lactation varied from 0.10 [8 days in milk (DIM)] to 0.30 (169 DIM), from 0.06 (29 DIM) to 0.29 (305 DIM), and from 0.08 (50 DIM) to 0.45 (305 DIM), respectively, when estimated using the random regression model. Genetic correlations within each trait tended to decrease as the interval between periods compared increased for DMI and EB, whereas the correlations with IDG in early lactation were weakest when measured midlactation. The lowest correlation between any 2 periods was 0.10, -0.36, and -0.04 for DMI, EB, and IDG, respectively, suggesting the effect of different genes at different stages of lactations. Eigenvalues and associated eigenfunctions of the additive genetic covariance matrix revealed considerable genetic variation among animals in the shape of the lactation profiles for DMI, EB, and IDG. Genetic parameters presented are the first estimates from dairy cows fed predominantly grazed grass and imply that genetic improvement in DMI, EB, and IDG in Holstein-Friesian cows fed predominantly grazed grass is possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.