Intracellular pathogens such as Mycobacterium tuberculosis are able to survive in the face of antimicrobial products generated by the host cell in response to infection. The product of the alkyl hydroperoxide reductase gene (ahpC) of M. tuberculosis is thought to be involved in protecting the organism against both oxidative and nitrosative stress encountered within the infected macrophage. Here we report that, contrary to expectations, ahpC expression in virulent strains of M. tuberculosis and Mycobacterium bovis grown in vitro is repressed, often below the level of detection, whereas expression in the avirulent vaccine strain M. bovis BCG is constitutively high. The repression of the ahpC gene of the virulent strains is independent of the naturally occurring lesions of central regulator oxyR. Using a green fluorescence protein vector (gfp)-ahpC reporter construct we present data showing that repression of ahpC of virulent M. tuberculosis also occurred during growth inside macrophages, whereas derepression in BCG was again seen under identical conditions. Inactivation of ahpC on the chromosome of M. tuberculosis by homologous recombination had no effect on its growth during acute infection in mice and did not affect in vitro sensitivity to H 2 O 2 . However, consistent with AhpC function in detoxifying organic peroxides, sensitivity to cumene hydroperoxide exposure was increased in the ahpC::Km r mutant strain. The preservation of a functional ahpC gene in M. tuberculosis in spite of its repression under normal growth conditions suggests that, while AhpC does not play a significant role in establishing infection, it is likely to be important under certain, as yet undefined conditions. This is supported by the observation that repression of ahpC expression in vitro was lifted under conditions of static growth.
Oxidative stress response in pathogenic mycobacteria is believed to be of significance for host-pathogen interactions at various stages of infection. It also plays a role in determining the intrinsic susceptibility to isoniazid in mycobacterial species. In this work, we characterized the oxyR-ahpC and furA-katG loci in the nontuberculous pathogen Mycobacterium marinum. In contrast to Mycobacterium smegmatis and likeMycobacterium tuberculosis and Mycobacterium leprae, M. marinum was shown to possess a closely linked and divergently oriented equivalents of the regulator of peroxide stress response oxyR and its subordinate geneahpC, encoding a homolog of alkyl hydroperoxide reductase. Purified mycobacterial OxyR was found to bind to theoxyR-ahpC promoter region from M. marinum and additional mycobacterial species. Mobility shift DNA binding analyses using OxyR binding sites from several mycobacteria and a panel of in vitro-generated mutants validated the proposed consensus mycobacterial recognition sequence. M. marinum AhpC levels detected by immunoblotting, were increased upon treatment with H2O2, in keeping with the presence of a functional OxyR and its binding site within the promoter region ofahpC. In contrast, OxyR did not bind to the sequences upstream of the katG structural gene, and katGexpression did not follow the pattern seen with ahpC. Instead, a new open reading frame encoding a homolog of the ferric uptake regulator Fur was identified immediately upstream ofkatG in M. marinum. The furA-katGlinkage and arrangement are ubiquitous in mycobacteria, suggesting the presence of additional regulators of oxidative stress response and potentially explaining the observed differences in ahpC andkatG expression. Collectively, these findings broaden our understanding of oxidative stress response in mycobacteria. They also suggest that M. marinum will be useful as a model system for studying the role of oxidative stress response in mycobacterial physiology, intracellular survival, and other host-pathogen interactions associated with mycobacterial diseases.
One of the major mechanisms permitting intracellular pathogens to parasitize macrophages is their ability to alter maturation of the phagosome or affect its physical integrity. These processes are opposed by the host innate and adaptive immune defenses, and in many instances mononuclear phagocytes can be stimulated with appropriate cytokines to restrict the growth of the microorganisms within the phagosomal compartment. Very little is known about the effects that cytokines have on phagosome maturation. Here we have used green fluorescent protein (GFP)-labeled mycobacteria and a fixable acidotropic probe, LysoTracker Red DND-99, to monitor maturation of the mycobacterial phagosome. The macrophage compartments that stained with the LysoTracker probe were examined first. This dye was found to colocalize preferentially with the late endosomal and lysosomal markers rab7 and Lamp1, and with a fluid phase marker chased into the late endosomal compartments. In contrast, LysoTracker showed only a minor overlap with the early endosomal marker rab5. Pathogenic mycobacteria are believed to reside in nonacidified vacuoles sequestered away from late endosomal compartments as a part of their intracellular survival strategy. We examined the status of mycobacterial phagosomes in macrophages from IL-10 knockout mice, in quiescent cells, and in mononuclear phagocytes stimulated with the macrophage-activating cytokine IFN-(gamma). When macrophages were derived from the bone marrow of transgenic IL-10 mice lacking this major deactivating cytokine, colocalization of GFP-fluorescing mycobacteria with the LysoTracker staining appeared enhanced, suggestive of increased acidification of the mycobacterial phagosome relative to macrophages from normal mice. When bone marrow-derived macrophages from normal mice or a J774 murine macrophage cell line were stimulated with IFN-(gamma) and LPS, this resulted in increased colocalization of mycobacteria and LysoTracker, but no statistically significant enhancement was observed in IL-10 transgenic animals. These studies are consistent with the interpretation that proinflammatory and anti-inflammatory cytokines affect maturation of mycobacterial phagosomes. Although multiple mechanisms are likely to be at work, we propose the existence of a direct link between cytokine effects on the host cell and phagosome maturation in the macrophage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.