A pair plasma consisting of two types of ions, possessing equal masses and opposite charges, is considered. The nonlinear propagation of modulated electrostatic wave packets is studied by employing a two-fluid plasma model. Considering propagation parallel to the external magnetic field, two distinct electrostatic modes are obtained, namely a quasiacoustic lower moddfe and a Langmuir-like, as optic-type upper one, in agreement with experimental observations and theoretical predictions. Considering small yet weakly nonlinear deviations from equilibrium, and adopting a multiple-scale technique, the basic set of model equations is reduced to a nonlinear Schrödinger equation for the slowly varying electric field perturbation amplitude. The analysis reveals that the lower (acoustic) mode is stable and may propagate in the form of a dark-type envelope soliton (a void) modulating a carrier wave packet, while the upper linear mode is intrinsically unstable, and may favor the formation of bright-type envelope soliton (pulse) modulated wave packets. These results are relevant to recent observations of electrostatic waves in pair-ion (fullerene) plasmas, and also with respect to electron-positron plasma emission in pulsar magnetospheres.
The nonlinear propagation of amplitude modulated electrostatic wavepackets in an electron-positron-ion (e-p-i) plasma is considered, by employing a two-fluid plasma model. Considering propagation parallel to the external magnetic field, two distinct electrostatic modes are obtained, namely a quasi-thermal acoustic-like lower mode and a Langmuir-like optic-type upper one. These results equally apply in warm pair ion (e.g. fullerene) plasmas contaminated by a small fraction of stationary ions (or dust), in agreement with experimental observations and theoretical predictions in pair plasmas. Considering small yet weakly nonlinear deviations from equilibrium, and adopting a multiple-scales perturbation technique, the basic set of model equations is reduced to a nonlinear Schrödinger (NLS) equation for the slowly varying electric field perturbation amplitude. The analysis reveals that the lower (acoustic) mode is mostly stable for large wave lengths, and may propagate in the form of a dark-type envelope soliton (a void) modulating a carrier wave packet, while the upper linear mode is intrinsically unstable, and thus favors the formation of bright-type envelope soliton (pulse) modulated wavepackets. The stability (instability) range for the acoustic (Langmuir-like optic) mode shifts to larger wavenumbers as the positive-to-negative ion temperature (density) ratio increases. These results may be of relevance in astrophysical contexts, where e-p-i plasmas are encountered, and may also serve as prediction of the behavior of doped (or dustcontaminated) fullerene plasmas, in laboratory.
Ion-acoustic (IA) solitary waves are investigated in a magnetized three-component plasma consisting of cold ions, isothermal hot electrons, and positrons. The basic set of fluid equations is reduced to the Korteweg de Vries equation using the standard reductive perturbation (multiple-scale) technique. Theoretical and numerical analyses confirm significant effects of the presence of positrons and the dependence of the electron to positron temperature ratio on the amplitude and the width of IA solitary waves. It is shown that the rarefactive and compressive IA solitary excitations can propagate when the propagation angle θ satisfies 0≤θ<π/2 and π/2<θ≤π, respectively. Also, it is remarked that the amplitude of the rarefactive and compressive IA solitary excitations is not affected by the magnitude of external magnetic field B0, whereas their width depends strictly on B0. The numerical analysis has been done based on the typical numerical data from a pulsar magnetosphere.
The nonlinear propagation of ion acoustic waves in an ideal plasmas containing degenerate electrons is investigated. The Korteweg-de-Vries (K-dV) equation is derived for ion acoustic waves by using reductive perturbation method. The analytical traveling wave solutions of the K-dV equation investigated, through the (G /G)-expansion method. These traveling wave solutions are expressed by hyperbolic function, trigonometric functions are rational functions. When the parameters are taken special values, the solitary waves are derived from the traveling waves. Also, numerically the effect different parameters on these solitary waves investigated and it is seen that exist only the compressive solitary waves in Thomas-Fermi plasmas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.