We report the integral cross sections per scatterer (i.e. elastic collision, phonon excitations, vibrational excitations, electronic excitations and ionization) for 1-100 eV electron scattering in an amorphous film of ice condensed at a temperature of 14 K. The integral cross sections are determined relative to the total from a two-stream multiple-scattering analysis of the electron energy distribution backscattered from the film. Their energy dependence is obtained from both the analysis of the elastic electron reflectivity as a function of the film thickness and the vibrational electron energy-loss spectra measured for several incident energies and large film thickness. The magnitude and various features found in the energy dependence of the cross sections are discussed, whenever possible, by comparison with data and with scattering mechanisms available in the gas phase. Microcospic effects, which are implicitly included in cross sections determined in this way, are discussed in terms of interference and coherent multiple-scattering contributions among the scattering sites as well as interactions of the scattering sites with their neighbors in the condensed phase.
Cross sections (CSs) for the interaction of low-energy electrons (LEE) with condensed macromolecules are essential parameters for accurate modeling of radiation-induced molecular decomposition and chemical synthesis. Electron irradiation of dry nanometer-scale macromolecular solid films has often been employed to measure CSs and other quantitative parameters for LEE interactions. Since such films have thicknesses comparable with electron thermalization distances, energy deposition varies throughout the film. Moreover, charge accumulation occurring inside the films shields a proportion of the macromolecules from electron irradiation. Such effects complicate the quantitative comparison of the CSs obtained in films of different thicknesses and limit the applicability of such measurements. Here, we develop a simple mathematical model, termed the molecular survival model, that employs a CS for a particular damage process together with an attenuation length related to the total CS, to investigate how a measured CS might be expected to vary with experimental conditions. As a case study, we measure the absolute CS for the formation of DNA strand breaks (SBs) by electron irradiation at 10 and 100 eV of lyophilized plasmid DNA films with thicknesses between 10 and 30 nm. The measurements are shown to depend strongly on the thickness and charging condition of the nanometer-scale films. Such behaviors are in accord with the model and support its validity. Via this analysis, the CS obtained for SB damage is nearly independent of film thickness and charging effects. In principle, this model can be adapted to provide absolute CSs for electron-induced damage or reactions occurring in other molecular solids across a wider range of experimental conditions.
Low-energy vibrational and electronic electron-energy-loss (EEL) spectra of pyrimidine condensed on a thin film of solid argon held at 18 K are reported for the incident-energy range of 2-12 eV. Sensitivity to symmetry and spin forbidden transitions as well as correlations to the triplet states of benzene make it possible to ascribe the main features, below 7 eV in the electronic part of the EEL spectrum, to triplet transitions. The lowest EEL feature with an energy onset at 3.5 eV is attributed to a transition to the (3)B(1)(n-->pi(*)) valence electronic state and the next triplet n-->pi(*) transition to a (3)A(2) state located around 4.5 eV. The remaining EEL features at 4.3, 5.2, 5.8, and 6.5 eV are all assigned to pi-->pi(*) transitions to states of symmetry (3)B(2), (3)A(1), (3)B(2), and (3)B(2)+(3)A(1), respectively. The most intense maximum at 7.6 eV is found to correspond to both (1)B(2) and (1)A(1) transitions, as in the vacuum ultraviolet spectra. Absolute inelastic cross sections per scatterer are derived from a single collision treatment described herein. Their values are found to lie within the 10(-17) cm(2) range for both the electronic and the vibrational excitations. Features in the energy dependence of the cross sections are discussed, whenever possible, by comparison with data and mechanisms found in the gas phase. A maximum over the 4-5 eV range is attributed to a B (2)B(1) shape resonance and another one observed in the 6-7 eV range is ascribed to either or both sigma(*) shape resonances of (2)A(1) and (2)B(2) symmetries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.