We investigate heat transport in a spin-
2Heisenberg chain, coupled locally to independent thermal baths of different temperature. The analysis is carried out within the framework of the theory of open systems by means of appropriate quantum master equations. The standard microscopic derivation of the weak-coupling Lindblad equation in the secular approximation is considered, and shown to be inadequate for the description of stationary nonequilibrium properties like a non-vanishing energy current. Furthermore, we derive an alternative master equation that is capable to describe a stationary energy current and, at the same time, leads to a completely positive dynamical map. This paves the way for efficient numerical investigations of heat transport in larger systems based on Monte Carlo wave function techniques.
The time-convolutionless (TCL) projection operator technique allows a systematic analysis of the non-Markovian quantum dynamics of open systems. We present a class of projection superoperators that project the states of the total system onto certain correlated system-environment states. It is shown that the application of the TCL technique to this class of correlated superoperators enables the nonperturbative treatment of the dynamics of system-environment models for which the standard approach fails in any finite order of the coupling strength. We demonstrate further that the correlated superoperators correspond to the idea of a best guess of conditional quantum expectations, which is determined by a suitable Hilbert-space average. The general approach is illustrated by means of the model of a spin that interacts through randomly distributed couplings with a finite reservoir consisting of two energy bands. Extensive numerical simulations of the full Schrödinger equation of the model reveal the power and efficiency of the method.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
Within the Lindblad formalism we consider an interacting spin chain coupled locally to heat baths. We investigate the dependence of the energy transport on the type of interaction in the system as well as on the overall interaction strength. For a large class of couplings we find a normal heat conduction and confirm Fourier's Law. In a fully quantum mechanical approach linear transport behavior appears to be generic even for small quantum systems.
PACS. 05.60.Gg Quantum transport -05.30.-d Quantum statistical mechanics -05.70.Ln Nonequilibrium and irreversible thermodynamics
We consider a class of one-dimensional chains of weakly coupled many level systems. We present a theory which predicts energy diffusion within these chains for almost all initial states, if some concrete conditions on their Hamiltonians are met. By numerically solving the time dependent Schrödinger equation, we verify this prediction. Close to equilibrium we analyze this behavior in terms of heat conduction and compute the respective coefficient directly from the theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.