The performance of solution processed polymer:fullerene thin film photovoltaic cells is largely determined by the nanoscopic and mesoscopic morphology of these blends that is formed during the drying of the layer. Although blend morphologies have been studied in detail using a variety of microscopic, spectroscopic, and scattering techniques and a large degree of control has been obtained, the current understanding of the processes involved is limited. Hence, predicting the optimized processing conditions and the corresponding device performance remains a challenge. We present an experimental and modeling study on blends of a small band gap diketopyrrolopyrrole-quinquethiophene alternating copolymer (PDPP5T) and [6,6]-phenyl-C71-butyric acid methyl ester ([70]PCBM) cast from chloroform solution. The model uses the homogeneous Flory-Huggins free energy of the multicomponent blend and accounts for interfacial interactions between (locally) separated phases, based on physical properties of the polymer, fullerene, and solvent. We show that the spinodal liquid-liquid demixing that occurs during drying is responsible for the observed morphologies. The model predicts an increasing feature size and decreasing fullerene concentration in the polymer matrix with increasing drying time in accordance with experimental observations and device performance. The results represent a first step toward a predictive model for morphology formation.
Optical excitation of a polymer‐fullerene solar cell via the charge‐transfer transition at the donor‐acceptor interface, leads to generation of charge carriers displaying dynamics that are indistinguishable from those generated by excitation of the conjugated polymer at higher photon energy. This indicates that excess energy liberated in the photoinduced electron transfer between polymer and fullerene is not essential for the charge carrier generation.
How did chemicals first become organized into systems capable of self-propagation and adaptive evolution? One possibility is that the first evolvers were chemical ecosystems localized on mineral surfaces and composed of sets of molecular species that could catalyze each other’s formation. We used a bottom-up experimental framework; chemical ecosystem selection (CES) to evaluate this perspective and search for surface-associated; and mutually catalytic chemical systems based on the changes in chemistry they are expected to induce. Here, we report the results of preliminary CES experiments conducted using a synthetic “prebiotic soup” and pyrite grains, which yield dynamical patterns that are suggestive of the emergence of mutual catalysis. While more research is needed to better understand the specific patterns observed here and determine whether they are reflective of self-propagation, these results illustrate the potential power of CES to test competing hypotheses for the emergence of protobiological chemical systems.
The effect of an acoustically driven bubble on the acoustics of a liquid-filled pipe is theoretically analyzed and the dimensionless groups of the problem are identified. The different regimes of bubble volume oscillations are predicted theoretically with these dimensionless groups. Three main regimes can be identified: (1) For small bubbles and weak driving, the effect of the bubble oscillations on the acoustic field can be neglected. (2) For larger bubbles and still small driving, the bubble affects the acoustic field, but due to the small driving, a linear theory is sufficient. (3) For large bubbles and large driving, the two-way coupling between the bubble and the flow dynamics requires the solution of the full nonlinear problem. The developed theory is then applied to an air bubble in a channel of an inkjet printhead. A numerical model is developed to test the predictions of the theoretical analysis. The Rayleigh-Plesset equation is extended to include the influence of the bubble volume oscillations on the acoustic field and vice versa. This modified Rayleigh-Plesset equation is coupled to a channel acoustics calculation and a Navier-Stokes solver for the flow in the nozzle. The numerical simulations indeed confirm the predictions of the theoretical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.