Bioengineering analyses of physiological systems use the computational solution of physical conservation laws on anatomically detailed geometric models to understand the physiological function of intact organs in terms of the properties and behaviour of the cells and tissues within the organ. By linking behaviour in a quantitative, mathematically defined sense across multiple scales of biological organization -from proteins to cells, tissues, organs and organ systems -these methods have the potential to link patient-specific knowledge at the two ends of these spatial scales. A genetic profile linked to cardiac ion channel mutations, for example, can be interpreted in relation to body surface ECG measurements via a mathematical model of the heart and torso, which includes the spatial distribution of cardiac ion channels throughout the myocardium and the individual kinetics for each of the approximately 50 types of ion channel, exchanger or pump known to be present in the heart. Similarly, linking molecular defects such as mutations of chloride ion channels in lung epithelial cells to the integrated function of the intact lung requires models that include the detailed anatomy of the lungs, the physics of air flow, blood flow and gas exchange, together with the large deformation mechanics of breathing. Organizing this large body of knowledge into a coherent framework for modelling requires the development of ontologies, markup languages for encoding models, and web-accessible distributed databases. In this article we review the state of the field at all the relevant levels, and the tools that are being developed to tackle such complexity. Integrative physiology is central to the interpretation of genomic and proteomic data, and is becoming a highly quantitative, computer-intensive discipline.
Extracellular recording techniques were used to record the responses of medial nucleus cells and posterior lateral line nerve fibers in mottled sculpin, Cottus bairdi, and goldfish, Carassius auratus, to a 50-Hz dipole source (vibrating sphere). Responses were characterized in terms of (1) receptive fields that relate responsiveness (spike rate and phase-locking) to the location of the source along the length of the fish, (2) input-output functions that relate responsiveness to vibration amplitude for a fixed source location, and (3) peri-stimulus time histograms that relate responsiveness to time during a sustained period of vibration. Relative to posterior lateral line nerve fibers, medial nucleus cells in both species were similar in showing (1) lower spontaneous and evoked rates of spike activity, (2) greater degrees of adaptation, (3) greater heterogeneity in all response characteristics, and (4) evidence for inhibitory/excitatory interactions. Whereas receptive fields of nerve fibers in both species faithfully reflect both pressure gradient amplitudes (with rate changes) and directions (with phase-angle changes) in the stimulus field, receptive fields of medial nucleus were more difficult to relate to the stimulus field, Some, but not all, receptive fields could be modeled with excitatory center/inhibitory surround and inhibitory center/excitatory surround organizations.
The use of high-energy measurement signals combined with digital multichannel recording and postprocessing leads to a highly efficient collection of impulse responses in concert halls. During measurements in two similar concert halls, the Christchurch Town Hall, New Zealand, and the Hong Kong Cultural Centre (both described in companion papers), responses were collected in all seats in some areas and in different positions in some single seats, in addition to the usual sampling of all areas. An omnidirectional loudspeaker source was used, and the measurements were repeated in several source positions. The distribution of various parameters in these areas are compared to the results for the whole hall. Based on this comparison the use of mean and standard deviation as measures of location and spread for the parameters is discussed, and the variation of parameters with varying source locations is demonstrated. Approaches toward the reduction of parameter sensitivity to insignificant details in the early sound field are briefly discussed and illustrated using the measured data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.