Blister formation and D retention in W have been investigated for low energy (∼55 ± 15 eV), high flux (∼1022 m−2 s−1), high fluence (⩽4.5 × 1026 m−2) ion bombardment at moderate temperature (∼573 K) in mixed species D+He plasmas in the linear divertor plasma simulator PISCES-A. The amount of D retained in W is found to decrease significantly when compared with that in W exposed to pure D plasmas, as measured with high resolution thermal desorption spectroscopy. Scanning electron microscopy observations reveal the suppression of the blisters, a surface feature known to drive up retention, in the D + He mixture plasma exposed W samples. Reduced D retention is accompanied by the formation of nano-sized high density He bubbles in the near surface, observed with a transmission electron microscope (TEM). It is believed that the nano-bubbles act as a diffusion barrier to implanted D atoms and consequently reduce the amount of uptake in the W material. This newly observed effect implies that current predictions of D retention in W, in actual fusion devices, may be overestimated, since there will be He ash in fusion plasma. Toughness enhanced, fine-grained (grain size of ∼1 µm) W–TiC samples, exposed to pure D plasma conditions, also show little or no evidence of blistering. The measured D retention in the W–TiC samples was approximately 1 × 1019 D m−2 corresponding to about 2 × 10−7 of the implanted D fluence, and is very low compared with the retention in pure stress relieved W, which exhibited surface blisters and had a D retention of about 1 × 1021 D m−2.
W targets are exposed at fixed temperature in the range ∼420–1100 K, to either pure D2, D2–δHe (0.1 < δ < 0.25), or D2–δHe–γAr (γ = 0.03) mixture plasma, or He pretreatment plasma followed by exposure to D2 plasma. A strong reduction in D retention is found for exposure temperature above 450 K and incident He-ion fluence exceeding ∼1024 m−2. Reduced D retention values lie well below that measured on D2 plasma-exposed reference targets, and the scatter in retention values reported in the literature. A small level of Ar admixture to D2–0.1He plasma, leading to an Ar ion density fraction of ∼3%, is found to have minimal effect on the D inventory reduction caused by He. In targets with reduced inventory, nuclear-reaction analysis reveals shallow D trapping (<50 nm), in the same locale as nanometre-sized bubbles observed using transmission electron microscopy. It is suggested that near-surface bubbles grow and interconnect, forming pathways leading back to the plasma–material interaction surface, thereby interrupting transport to the bulk and reducing D retention.
The JET 2019-2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major Neutral Beam Injection (NBI) upgrade providing record power in 2019-2020, and tested the technical & procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle physics in the coming D-T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed Shattered Pellet Injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design & operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D-T benefited from the highest D-D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.