In master-slave teleoperation applications that deal with a delicate and sensitive environment, it is important to provide haptic feedback of slave/environment interactions to the user's hand as it improves task performance and teleoperation transparency (fidelity), which is the extent of telepresence of the remote environment available to the user through the master-slave system. For haptic teleoperation, in addition to a haptics-capable master interface, often one or more force sensors are also used, which warrant new bilateral control architectures while increasing the cost and the complexity of the teleoperation system. In this paper, we investigate the added benefits of using force sensors that measure hand/master and slave/environment interactions and of utilizing local feedback loops on the teleoperation transparency. We compare the two-channel and the four-channel bilateral control systems in terms of stability and transparency, and study the stability and performance robustness of the four-channel method against nonidealities that arise during bilateral control implementation, which include master-slave communication latency and changes in the environment dynamics. The next issue addressed in the paper deals with the case where the master interface is not haptics capable, but the slave is equipped with a force sensor. In the context of robotics-assisted soft-tissue surgical applications, we explore through human factors experiments whether slave/environment force measurements can be of any help with regard to improving task performance. The last problem we study is whether slave/environment force information, with and without haptic capability in the master interface, can help improve outcomes under degraded visual conditions.
Conventional endoscopic surgery has some drawbacks that can be addressed by using robots. The robotic systems used for surgery are still in their infancy. A major deficiency is the lack of haptic feedback to the surgeon. In this paper, the benefits of haptic feedback in robot-assisted surgery are discussed. A novel robotic end-effector is then described that meets the requirements of endoscopic surgery and is sensorized for force/ torque feedback. The endoscopic end-effector is capable of non-invasively measuring its interaction with tissue in all the degrees of freedom available during endoscopic manipulation. It is also capable of remotely actuating a tip and measuring its interaction with the environment without using any sensors on the jaws. The sensorized end-effector can be used as the last arm of a surgical robot to incorporate haptic feedback and/or to evaluate skills and learning curves of residents and surgeons in endoscopic surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.