Increasing of anthropogenic electromagnetic fields in aquatic environments has been recently become the core of attention. In this study, the effect of extremely low-frequency electromagnetic fields (50 Hz) on immune status and metabolic markers of common carp fingerling was assessed. The fish were exposed to extremely low-frequency electromagnetic fields at four intensities of 0.1, 0.5, 1, and 2 mT only once for 2 h; then, they were reared for 60 days. Results showed that the levels of aspartate aminotransferase (AST) and alanine transaminase (ALT) and alkaline phosphatase (ALP) were increased with an increase in the electromagnetic field intensity on 15 and 60 days post exposure. A significant increase was obtained in these enzyme levels in all the tested intensities compared to the control one (p < 0.05), with a maximum value measured in 2-mT trail. Conversely, with an increasing in the electromagnetic intensity, the levels of C3, C4, and lysozyme were reduced in all the treated groups in comparison with the control group (p < 0.05). The results suggested a significant impact of electromagnetic on fish immunophysiological functions. Therefore, it is required to have serious attention in aquatic ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.