In the present study, aluminum metal matrix composites reinforced with 5 % volume fraction of TiO2 particles were manufactured via warm accumulative roll bonding (WARB). The mechanical properties and microstructural evolution of composites fabricated by 1, 3, 5, 7, and 9 cycles of WARB were studied with application of tensile, peeling, and Vickers micro-hardness tests. Microstructural evolution during ARB cycles led to improvement of the strength and elongation properties of the samples. According to the results, uniform distribution of TiO2 clusters improved both the strength and tensile toughness of the composites. Finally, introduction of TiO2 particles into the Al matrix via WARB would allow fabricating particle-reinforced Al alloy with high uniformity and significantly enhance the mechanical properties and bond strength. Moreover, after the tensile and peeling tests, the fracture and peeling surfaces of the samples were studied at various WARB cycles using scanning electron microscopy.
A new analytical formulation is presented to study the steady-state creep in short fiber composites using complex variable method. In this new approach, both the fiber and matrix creep at low stresses and temperatures. To analyze the crept fiber, a plane stress model was used. Important novelties of the present analytical method are determination of displacement rates with proper boundary conditions in the crept fibers and also using the complex variable method in creep analyzing. It is noteworthy that the method can be useful to study the creep behavior in polymeric matrix composites due to their high capability of creep. Moreover, another significant application of the present method is to study on the creep or elastic behavior of carbon nanotube polymer composites. Finally, the results obtained from the present analytical method (complex variable method) show a good agreement with the existing experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.