M . M OR E A, F. B AR UZ Z I A ND P .S . C O CC ONlactis, were the most acidifying; the L. lactis subsp. lactis strain was also proteolytic and eight strains were positive to citrate fermentation. Moreover, the molecular techniques allowed the identification of potential pathogens in a non-ripened cheese produced from raw milk.
A bacterium isolated from patulin-contaminated apples was capable of degrading patulin to a less-toxic compound, ascladiol. The bacterium was identified as Gluconobacter oxydans by 16S rRNA gene sequencing, whereas ascladiol was identified by liquid chromatography-tandem mass spectrometry and proton and carbon nuclear magnetic resonance. Degradation of up to 96% of patulin was observed in apple juices containing up to 800 g/ml of patulin and incubated with G. oxydans.
The loss of microbial biodiversity due to the increase in large‐scale industrial processes led to the study of the natural microflora present in a typical little known dairy product. The community of lactobacilli was studied in order to understand the natural fermentation of Ricotta forte cheese. The combined use of RAPD analysis, 16S rDNA sequencing and physiological tests allowed 33 different strains belonging to 10 species of Lactobacillus to be characterized. RAPD analysis revealed the heterogeneity of both the Lact. kefiri and Lact. paracasei species. The sequence analysis of the large 16S/23S rRNA spacer region enabled Lact. plantarum to be distinguished from Lact. paraplantarum, two closely related species belonging to the Lact. plantarum group. The recovery of strains endowed with interesting physiological characteristics, such as strong stress resistance, could improve technological and/or organoleptic characteristics of Ricotta forte cheese and other fermented foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.