We apply three data science techniques, Nonnegative Matrix Factorization (NMF), Principal Component Analysis (PCA) and Independent Component Analysis (ICA), to simulated X-ray energy spectra of a particular class of super-massive black holes. Two competing physical models, one whose variable components are additive and the other whose variable components are multiplicative, are known to successfully describe X-ray spectral variation of these super-massive black holes, within accuracy of the contemporary observation. We hope to utilize these techniques to compare the viability of the models by probing the mathematical structure of the observed spectra, while comparing advantages and disadvantages of each technique. We find that PCA is best to determine the dimensionality of a dataset, while NMF is better suited for interpreting spectral components and comparing them in terms of the physical models in question. ICA is able to reconstruct the parameters responsible for spectral variation. In addition, we find that the results of these techniques are sufficiently different that applying them to observed data may be a useful test in comparing the accuracy of the two spectral models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.