The eukaryotic biological clock involves a negative transcription-translation feedback loop in which clock genes regulate their own transcription and that of output genes of metabolic significance. While around 10% of the liver transcriptome is rhythmic, only about a fifth is driven by de novo transcription, indicating mRNA processing is a major circadian component. Here, we report that inhibition of transmethylation reactions elongates the circadian period. RNA sequencing then reveals methylation inhibition causes widespread changes in the transcription of the RNA processing machinery, associated with m(6)A-RNA methylation. We identify m(6)A sites on many clock gene transcripts and show that specific inhibition of m(6)A methylation by silencing of the m(6)A methylase Mettl3 is sufficient to elicit circadian period elongation and RNA processing delay. Analysis of the circadian nucleocytoplasmic distribution of clock genes Per2 and Arntl then revealed an uncoupling between steady-state pre-mRNA and cytoplasmic mRNA rhythms when m(6)A methylation is inhibited.
The tumor microenvironment can enhance the invasive capacity of tumor cells. We showed that expression of angiopoietin-like protein 2 (ANGPTL2) in osteosarcoma (OS) cell lines increased and the methylation of its promoter decreased with time when grown as xenografts in mice compared with culture. Compared with cells grown in normal culture conditions, the expression of genes encoding DNA demethylation-related enzymes increased in tumor cells implanted into mice or grown in hypoxic, serum-starved culture conditions. ANGPTL2 expression in OS cell lines correlated with increased tumor metastasis and decreased animal survival by promoting tumor cell intravasation mediated by the integrin α5β1, p38 mitogen-activated protein kinase, and matrix metalloproteinases. The tolloid-like 1 (TLL1) protease cleaved ANGPTL2 into fragments in vitro that did not enhance tumor progression when overexpressed in xenografts. Expression of TLL1 was weak in OS patient tumors, suggesting that ANGPTL2 may not be efficiently cleaved upon secretion from OS cells. These findings demonstrate that preventing ANGPTL2 signaling stimulated by the tumor microenvironment could inhibit tumor cell migration and metastasis.
The c-myc proto-oncogene encodes a transcription factor that promotes cell cycle progression and cell proliferation, and its deficiency results in severely retarded proliferation rates. The ATF3 stress response gene encodes a transcription factor that plays a role in determining cell fate under stress conditions. Its biological significance in the control of cell proliferation and its crosstalk regulation, however, are not well understood. Here, we report that the serum response of the ATF3 gene expression depends on c-myc gene and that the c-Myc complex at ATF/CREB site of the gene promoter plays a role in mediating the serum response. Intriguingly, ectopic expression of ATF3 promotes proliferation of c-myc-deficient cells, mostly by alleviating the impeded G1-phase progression observed in these cells, whereas ATF3 knockdown significantly suppresses proliferation of wild-type cells. Our study demonstrates that ATF3 is downstream of the c-Myc signaling pathway and plays a role in mediating the cell proliferation function of c-Myc. Our results provide a novel insight into the functional link of the stress response gene ATF3 and the protooncogene c-myc.
Dysregulation of iron metabolism has been observed in patients with neurodegenerative diseases (NDs). Utilization of several importers and exporters for iron transport in brain cells helps maintain iron homeostasis. Dysregulation of iron homeostasis leads to the production of neurotoxic substances and reactive oxygen species, resulting in iron-induced oxidative stress. In Alzheimer's disease (AD) and Parkinson's disease (PD), circumstantial evidence has shown that dysregulation of brain iron homeostasis leads to abnormal iron accumulation. Several genetic studies have revealed mutations in genes associated with increased iron uptake, increased oxidative stress, and an altered inflammatory response in amyotrophic lateral sclerosis (ALS). Here, we review the recent findings on brain iron metabolism in common NDs, such as AD, PD, and ALS. We also summarize the conventional and novel types of iron chelators, which can successfully decrease excess iron accumulation in brain lesions. For example, iron-chelating drugs have neuroprotective effects, preventing neural apoptosis, and activate cellular protective pathways against oxidative stress. Glial cells also protect neurons by secreting antioxidants and antiapoptotic substances. These new findings of experimental and clinical studies may provide a scientific foundation for advances in drug development for NDs.
The fibrogenic response in tissue-resident fibroblasts is determined by the balance between activation and repression signals from the tissue microenvironment. While the molecular pathways by which transforming growth factor-1 (TGF-β1) activates pro-fibrogenic mechanisms have been extensively studied and are recognized critical during fibrosis development, the factors regulating TGF-β1 signaling are poorly understood. Here we show that macrophage hypoxia signaling suppresses excessive fibrosis in a heart via oncostatin-m (OSM) secretion. During cardiac remodeling, Ly6C hi monocytes/macrophages accumulate in hypoxic areas through a hypoxia-inducible factor (HIF)-1α dependent manner and suppresses cardiac fibroblast activation. As an underlying molecular mechanism, we identify OSM, part of the interleukin 6 cytokine family, as a HIF-1α target gene, which directly inhibits the TGF-β1 mediated activation of cardiac fibroblasts through extracellular signal-regulated kinase 1/2-dependent phosphorylation of the SMAD linker region. These results demonstrate that macrophage hypoxia signaling regulates fibroblast activation through OSM secretion in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.