Nonlinear ultrashort pulse propagation in a mode-locked Yb:YAG laser with a highly nonlinear intra-cavity medium is analyzed using a nonlinear Schrodinger equation. The output spectra are extended by the increased laser intensity, and spectral bandwidths wider than those of the gain medium are achieved. Moreover, pulse widths are shortened by increased laser intensity to considerably less than those of the gain medium. The simulation results qualitatively agree with the experimental results.
High-efficiency cavity-dumped ytterbium-doped yttrium aluminum garnet (Yb:YAG) laser was developed. Although the high quantum efficiency of ytterbium-doped laser materials is appropriate for high-efficiency laser oscillation, the efficiency is decreased by their quasi-three/four laser natures. High gain operation by high intensity pumping is suitable for high efficiency oscillation on the quasi-three/four lasers without extremely low temperature cooling. In our group, highest efficiency oscillations for continuous wave, nanosecond to picosecond pulse lasers were achieved at room temperature by the high gain operation in which pump intensities were beyond 100 kW/cm 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.