International audienceAn original surface passivation technique of indium tin oxide (ITO) used as anode in organic solar cells is proposed. We demonstrate that a thin MoO3 film (3.5 +/- 1 nm) at the interface ITO/organic donor allows improving significantly the devices' performances. The devices are based on the multiheterojunction structure copper phthalocyanine (CuPc)/fullerene (C-60)/aluminum tris(8-hydroxyquinoline) (Alq(3)). The deposition of MoO3 onto ITO improves the charge transfer from CuPc to ITO. The enhancement in the hole collection efficiency in the presence of an oxide layer can be explained in terms of the reduction in the effective barrier against hole transfer from CuPc into the ITO anode. The contact ITO/MoO3/CuPc behaves like a metal-insulator-semiconductor (MIS) structure, which allows reducing the energy barrier due to the difference between the work function of ITO and the highest occupied molecular orbital of CuPc. It is shown that the optimum MoO3 thickness corresponds to a compromise between an optimum ITO coverage and a sufficient transparency of the trapezoidal barrier for the tunneling of the charge carriers. The MoO3 thin films are discontinuous, and the passivation effect is improved when the oxide thin film is covered by an ultrathin gold film. Such behavior is discussed in the light of band scheme structures after contact and of geometrical considerations
The authors have achieved an efficient organic solar cell based on copper phthalocyanine (CuPc) layer as donor and fullerene (C60) as acceptor. The aluminum doped zinc oxide (ZnO:Al) instead of indium tin oxide (ITO) is used as the anode. An ultrathin gold film is introduced among ZnO:Al, transparent conductor oxide, and the CuPc donor layer. We show that the power conversion efficiency of this cell is enhanced by one order of magnitude compared to that achieved with a ZnO anode without ultrathin gold film. Therefore, the power conversion efficiency of this cell is comparable to that with an ITO anode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.