We theoretically demonstrate a one-to-one mapping between the direction of electron ionization and the phase delay between a linearly polarized vacuum ultraviolet (VUV) and a circular infrared (IR) laser pulse. To achieve this, we use an ultrashort VUV pulse that defines the moment in time and space when an above-threshold electron is released in the IR pulse. The electron can then be accelerated to high velocities escaping in a direction completely determined by the phase delay between the two pulses. The dipole matrix element to transition from an initial bound state of the N 2 molecule, considered in this work, to the continuum is obtained using quantum-mechanical techniques that involve computing accurate continuum molecular states. Following release of the electron in the IR pulse, we evolve classical trajectories, neglecting the Coulomb potential and accounting for quantum interference, to compute the distribution of the direction and magnitude of the final electron momentum. The concept we theoretically develop can be implemented to produce nanoscale ring currents that generate large magnetic fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.