ABSTRACT:The analysis of the impact crater size-frequency distribution (CSFD) is a well-established approach to the determination of the age of planetary surfaces. Classically, estimation of the CSFD is achieved by manual crater counting and size determination in spacecraft images, which, however, becomes very time-consuming for large surface areas and/or high image resolution. With increasing availability of high-resolution (nearly) global image mosaics of planetary surfaces, a variety of automated methods for the detection of craters based on image data and/or topographic data have been developed. In this contribution a template-based crater detection algorithm is used which analyses image data acquired under known illumination conditions. Its results are used to establish the CSFD for the examined area, which is then used to estimate the absolute model age of the surface. The detection threshold of the automatic crater detection algorithm is calibrated based on a region with available manually determined CSFD such that the age inferred from the manual crater counts corresponds to the age inferred from the automatic crater detection results. With this detection threshold, the automatic crater detection algorithm can be applied to a much larger surface region around the calibration area. The proposed age estimation method is demonstrated for a Kaguya Terrain Camera image mosaic of 7.4 m per pixel resolution of the floor region of the lunar crater Tsiolkovsky, which consists of dark and flat mare basalt and has an area of nearly 10,000 km 2 . The region used for calibration, for which manual crater counts are available, has an area of 100 km 2 . In order to obtain a spatially resolved age map, CSFDs and surface ages are computed for overlapping quadratic regions of about 4.4 x 4.4 km² size offset by a step width of 74 m. Our constructed surface age map of the floor of Tsiolkovsky shows age values of typically 3.2-3.3 Ga, while for small regions lower (down to 2.9 Ga) and higher (up to 3.6 Ga) age values can be observed. It is known that CSFD-derived absolute model ages can exhibit variations although the surface has a constant age. However, for four 10-20 km sized regions in the eastern part of the crater floor our map shows age values differing by several hundred Ma from the typical age of the crater floor, where the same regions are also discernible in Clementine UV/VIS color ratio image data probably due to compositional variations, such that the age differences of these four regions may be real.
PoS(10th EVN Symposium)075 Current VLBI observations are controlled and attended locally at the radio telescopes on the basis of pre-scheduled session files. Operations have to deal with system specific station commands and individual setup procedures. Neither the scheduler nor the correlator nor the data-analyst gets real-time feedback about system parameters during a session. Changes in schedules after the start of a session by remote are impossible or at least quite difficult. For future scientific approaches, a more flexible mechanism would optimize the usage of resources at the sites. Therefore shared-observation control between worldwide telescopes, remote attendance/control as well as completely unattended-observations could be useful, in addition to the classic way to run VLBI * Speaker. †
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.