Stereo matching is a significant subject in the stereo vision algorithm. Traditional taxonomy composition consists of several issues in the stereo correspondences process such as radiometric distortion, discontinuity, and low accuracy at the low texture regions. This new taxonomy improves the local method of stereo matching algorithm based on the dynamic cost computation for disparity map measurement. This method utilised modified dynamic cost computation in the matching cost stage. A modified Census Transform with dynamic histogram is used to provide the cost volume. An adaptive bilateral filtering is applied to retain the image depth and edge information in the cost aggregation stage. A Winner Takes All (WTA) optimisation is applied in the disparity selection and a left-right check with an adaptive bilateral median filtering are employed for final refinement. Based on the dataset of standard Middlebury, the taxonomy has better accuracy and outperformed several other state-ofthe-art algorithms. Keywords—Stereo matching, disparity map, dynamic cost, census transform, local method
Stereo matching is an essential subject in stereo vision architecture. Traditional framework composition consists of several constraints in stereo correspondences such as illumination variations in images and inadequate or non-uniform light due to uncontrollable environments. This work improves the local method stereo matching algorithm based on the dynamic cost computation method for depth measurement. This approach utilised modified dynamic cost computation in the matching cost. A modified census transform with dynamic histogram is used to provide the cost in the cost computation. The algorithm applied the fixed-window strategy with bilateral filtering to retain image depth information and edge in the cost aggregation stage. A winner takes all (WTA) optimisation and left-right check with adaptive bilateral median filtering are employed for disparity refinement. Based on the Middlebury benchmark dataset, the algorithm developed in this work has better accuracy and outperformed several other state-of-the-art algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.