Profiles ofZn in n-type InP(100) wafers after ampoule diffusion were measured by secondaryion mass spectrometry, Auger electron spectrometry, differential Hall-effect measurements, capacitance measurements, and scanning electron microscopy. The results can be explained by an interstitial-substitutional mechanism, in which Zn diffuses as a singly ionized interstitial and is incorporated in the In sublattice as an electrically active substitutional acceptor or as an electrically inactive complex. At Zn concentrations lower than the background donor concentration the profile is cut off', as interstitial diffusion breaks down. The acceptor solubility increases with background donor concentration. Activation energies for diffusion and solubility were found to be 1.40 and 1.0 eV, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.