We present the results of verifying the areas that were detected as prone to strong earthquakes by the pattern recognition algorithms in different regions of the world with different levels of seismicity and, therefore, different threshold magnitudes demarcating the strong earthquakes. The analysis is based on the data presented in the catalog of the U.S. National Earthquake Information Center (NEIC) as of August 1, 2012. In each of the regions considered, we examined the locations of the epicenters of the strong earthquakes that occurred in the region after the publication of the corresponding result. There were 91 such earthquakes in total. The epicenters of 79 of these events (87%) fall in the recognized earthquake prone areas, including 27 epicenters located in the areas where no strong earthquakes had ever been documented up to the time of publication of the result. Our analysis suggests that the results of the recognition of areas prone to strong earthquakes are reliable and that it is reasonable to use these results in the applications associated with the assessment of seismic risks. The comparison of the recognition for California with the analysis of seismicity of this region by the Discrete Perfect Sets (DPS) algorithm demonstrates the agreement between the results obtained by these two different methods.
This article continues the series of papers by the authors on the new universal DMAsmoothing of time series, originally intended for the analysis of geophysical time series obtained in the framework of discrete mathematical analysis (DMA), developed by GC RAS. We formulated the general concept of weighted DMA-smoothing, constructed and analyzed one of its variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.