The article presents a review of recent literature on the performance metrics of Automated Driving Systems (ADS). More specifically, performance indicators of environment perception and motion planning modules are reviewed as they are the most complicated ADS modules. The need for the incorporation of the level of threat an obstacle poses in the performance metrics is described. A methodology to quantify the level of threat of an obstacle is presented in this regard. The approach involves simultaneously considering multiple stimulus parameters (that elicit responses from drivers), thereby not ignoring multivariate interactions. Human-likeness of ADS is a desirable characteristic as ADS share road infrastructure with humans. The described method can be used to develop human-like perception and motion planning modules of ADS. In this regard, performance metrics capable of quantifying human-likeness of ADS are also presented. A comparison of different performance metrics is then summarized. ADS operators have an obligation to report any incident (crash/disengagement) to safety regulating authorities. However, precrash events/states are not being reported. The need for the collection of the precrash scenario is described. A desirable modification to the data reporting/collecting is suggested as a framework. The framework describes the precrash sequences to be reported along with the possible ways of utilizing such a valuable dataset (by the safety regulating authorities) to comprehensively assess (and consequently improve) the safety of ADS. The framework proposes to collect and maintain a repository of precrash sequences. Such a repository can be used to 1) comprehensively learn and model the precrash scenarios, 2) learn the characteristics of precrash scenarios and eventually anticipate them, 3) assess the appropriateness of the different performance metrics in precrash scenarios, 4) synthesize a diverse dataset of precrash scenarios, 5) identify the ideal configuration of sensors and algorithms to enhance safety, and 6) monitor the performance of perception and motion planning modules.
Classical artificial potential approach of motion planning is extended for emulating human driving behaviour in two dimensions. Different stimulus parameters including type of ego‐vehicle, type of obstacles, relative velocity, relative acceleration, and lane offset are used. All the surrounding vehicles are considered to influence drivers' decisions. No emphasis is laid on vehicle control; instead, an ego vehicle is assumed to reach the desired state. The study is on human‐like driving behaviour modelling. The developed motion planning algorithm formulates repulsive and attractive potentials in a data‐driven way in contrast to the classical arbitrary formulation. Interaction between the stimulus parameters is explicitly considered by using multivariate cumulative distribution functions. Comparison of two‐dimensional (lateral and longitudinal) performance indicators with a baseline model and generative adversarial networks indicate the effectiveness and suitability of the developed motion planning algorithm in the mixed traffic environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.