The consequences of a low litter average birth weight phenotype for postnatal growth performance and carcass quality of all progeny, and testicular development in male offspring, were investigated. Using data from 25 sows with one, and 223 sows with two consecutive farrowing events, individual birth weight (BW) was measured and each litter between 9 and 16 total pigs born was classified as low (LBW), medium (MBW) or high (HBW) birth weight: low and high BW being defined as .1 standard deviation below or above, respectively, the population mean for each litter size. Litter average BW was repeatable within sows. At castration, testicular tissue was collected from 40 male pigs in LBW and HBW litters with individual BW close to their litter average BW and used for histomorphometric analysis. LBW piglets had a lower absolute number of germ cells, Sertoli cells and Leydig cells in their testes and a higher brain : testis weight ratio than HBW piglets. Overall, LBW litters had lower placental weight and higher brain : liver, brain : intestine and brain : Semitendinosus muscle weight ratios than MBW and HBW litters. In the nursery and grow-finish (GF) phase, pigs were kept in pens by BW classification (9 HBW, 17 MBW and 10 LBW pens) with 13 males and 13 females per pen. Average daily gain tended to be lower in LBW than HBW litters in lactation (P 5 0.06) and throughout the nursery and GF phases (P , 0.01), resulting in an increasing difference in body weight between LBW, MBW and HBW litters (P , 0.05). Average daily feed intake was lower (P , 0.001) in LBW than HBW litters in the nursery and GF phases. Feed utilization efficiency (feed/gain) was similar for LBW and HBW litters in the nursery, but was lower (P , 0.001) in HBW than LBW litters in the GF phase. By design, slaughter weight was similar between BW classifications; however, LBW litters needed 9 more days to reach the same slaughter weight than HBW litters (P , 0.001). BW classification did not affect carcass composition traits. In conclusion, LBW litters showed benchmarks of intrauterine growth retardation, LBW had a negative impact on testicular development and germ and somatic cell populations, and was associated with decreased postnatal growth during all phases of production; however, no measurable effect on carcass composition traits was established.
The effects of feed restriction (60% of anticipated feed intake; Restrict; n=60) during the last week of a 21-day lactation in primiparous sows compared with feeding at 90% of anticipated feed intake (Control; n=60) on sow metabolic state, litter growth and sow reproductive performance after weaning were compared. Metabolisable energy (ME) derived from feed was lower, ME derived from body tissues was higher and litter growth rate was reduced (all P<0.05) in Restrict sows during the last week of lactation. Treatment did not affect weaning-to-oestrus interval, pregnancy rate, ovulation rate, embryonic survival or the number of live embryos (P>0.05) at Day 30 of gestation: However, embryo weight was greater (P<0.05) in Control than in Restrict sows (1.55±0.04vs 1.44±0.04g, respectively). These data suggest the biology of the commercial sow has changed and reproductive performance of contemporary primiparous sows is increasingly resistant to the negative effects of lactational catabolism. Overall, catabolism negatively affected litter weaning weight and embryonic development of the next litter, but the extent to which individual sows used tissue mobilisation to support these litter outcomes was highly variable.
Feeding n-3 long-chain polyunsaturated fatty acids (LCPUFA) to gilts or sows has shown different responses to litter growth, pre-weaning mortality and subsequent reproductive performance of the sow. Two hypotheses were tested: (1) that feeding a marine oil-based supplement rich in protected n-3 LCPUFAs to gilts in established gestation would improve the growth performance of their litters; and (2) that continued feeding of the supplement during lactation and after weaning would offset the negative effects of lactational catabolism induced, using an established experimental model involving feed restriction of lactating primiparous sows. A total of 117 primiparous sows were pair-matched at day 60 of gestation by weight, and when possible, litter of origin, and were allocated to be either control sows (CON) fed standard gestation and lactation diets, or treated sows (LCPUFA) fed the standard diets supplemented with 84 g/day of a n-3 LCPUFA rich supplement, from day 60 of first gestation, through a 21-day lactation, and until euthanasia at day 30 of their second gestation. All sows were feed restricted during the last 7 days of lactation to induce catabolism, providing a background challenge against which to determine beneficial effects of n-3 LCPUFA supplementation on subsequent reproduction. In the absence of an effect on litter size or birth weight, n-3 LCPUFA tended to improve piglet BW gain from birth until 34 days after weaning ( P 5 0.06), while increasing pre-weaning mortality ( P 5 0.05). It did not affect energy utilization by the sow during lactation, thus not improving the catabolic state of the sows. Supplementation from weaning until day 30 of second gestation did not have an effect on embryonic weight, ovulation rate or early embryonic survival, but did increase corpora lutea (CL) weight ( P 5 0.001). Eicosapentaenoic acid and docosahexaenoic acid (DHA) levels were increased in sow serum and CL ( P , 0.001), whereas only DHA levels increased in embryos ( P , 0.01). In conclusion, feeding n-3 LCPUFA to gilts tended to improve litter growth, but did not have an effect on overall subsequent reproductive performance.
The aims of this work were first to evaluate nutritional requirements of early weaned kits (23 days of age), more especially fibre (experiment 1) and protein (experiment 2) needs. In experiment 1, 276 early weaned rabbits were offered from 23 to 50 days of age one of the three experimental diets containing increasing acid-detergent fibre level (160, 190 or 220 g/kg). Fibre was substituted by starch and fat to obtain three isoenergetic diets. In experiment 2, 306 early weaned rabbits were offered from 23 to 50 days of age one of the three experimental diets containing increasing crude protein (CP) level (150, 180 or 210 g/kg). Protein was substituted by starch and fat to obtain three isoenergetic diets. These studies revealed no effect of the dietary fibre level and the dietary CP level on health status. But from 23 to 36 days of age rabbits given diets containing a fibre level over 190 g/kg or a CP level under 180 g/kg showed the lowest growth rate as compared with other respective treatments. Secondly, this research aimed to evaluate the interaction between age at weaning (23 days or 35 days of age) and food (RD and RY diets) on digestive health and performances of young rabbits (experiment 3). RD diet was formulated to contain (per kg) 170 g starch, 160 g fibre and 180 g CP (according to the nutritional requirements of does) and RY diet was formulated to reach 110 g starch, 160 g fibre and 210 g CP (according to the results of experiments 1 and 2). 39 litters of nine pups per litter were assigned at 18 days of age to one of four experimental groups in a 2 £ 2 factorial design: RD23 (no. ¼ 84 rabbits), RY23 (no. ¼ 85 rabbits), RD35 (no. ¼ 86 rabbits) and RY35 (no. ¼ 74 rabbits). Food intake and live weight were not influenced by feeding strategy. Between 23 and 35 days of age, mortality was higher in RY than in RD group (20·4 v. 6·8% respectively; P , 0·05). During this period growth rate was proportionately 0·584 higher in conventionally weaned than in early weaned rabbits ( P , 0·001). After 35 days of age, food intake and growth rate were proportionately 0·104 and 0·097 higher respectively in conventionally than in early weaned rabbits ( P , 0·05). Consequently, live weight was higher in conventionally weaned rabbits at both 35 and 53 days of age (proportionately þ0·113 and þ0·267 respectively; P , 0·001). Mortality rate between 23 and 35 days was 21 points higher ( P , 0·001) in early weaned than in conventionally weaned pups and 43 points higher ( P , 0·001) from 35 to 53 days of age. These data suggest that the removal of milk feeding by early weaning leads to detrimental effects on health and growth of the young, which were not compensated by a diet meeting better their nutritional needs.Early weaning (, 25 days of age) is a simple and efficient method to offer to the young a specific food adapted to their
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.