Basil (Ocimum basilicum L.) is one of the important aromatic plants belonging to the family Lamiaceae, which is used as an herb, spice as well as fresh vegetable.The present study was performed to determine the irrigation depth index under different management conditions with evaluating the effect of deficit irrigation, soil texture and nano fertilization on basil. The experiment was performed as a factorial based on randomized complete block design (RCBD) with 18 treatments and three replications at weather station, Ferdowsi University of Mashhad. Deficit irrigation treatments consisted of three levels of irrigation (I 1 =100% ET c), (I 2 =75% ET c), (I 3 =50%ET c) and three levels of nano fertilizers, containing nano fertilizer with full concentration (F 1), 70% (F 2), and nonusing of nano fertilizer (F 3) were implemented in two light soil texture (S 1) and medium soil texture (S 2). The results showed that the average actual evapotranspiration estimation by REC-P55 device has been equal to 3.38 mm at the beginning of the growing period of basil, which amount has increased to 8.60 mm during basil development in the middle of growth period. The results of crop coefficient analysis showed that the maximum kc of basil (1.42) was detected in July. The results also indicated that the highest water use efficiency (WUE) was obtained in terms of fresh and dry herb yield as 2.06 and 0.37 kg/m 3 in S 2 I 3 F 3 treatment, respectively, while the maximum water use efficiency in terms of seed yield (0.37 kg/m 3) was obtained in S 1 I 2 F 2 treatment. Using the research results, according to different levels of water use of functions of yield Y(w), cost C(w), and benefit B(w) for basil based on mathematical and economic analysis of these functions, irrigation index and optimal irrigation depths were evaluated. It was found that with deficit irrigation under water restriction conditions, with the aim of maximum use of water volume unit, the optimal water consumption depth will be reduced by 20% compared to maximum irrigation mode. Also, with this amount of deficit irrigation, the maximum Rial return per cubic meter of water consumption would be as 1849 Rials.
The wind drift and evaporation losses (WDEL) are high in arid, semi-arid and windward areas, and reduce the efficiency of the sprinkler irrigation system; therefore, this study was carried out in order to achieve a practical criterion and provide a relationship for accurate estimation of the wind drift and evaporation losses in different atmospheric conditions. The experiments were done at the Meteorological Station of the Faculty of Agriculture of Ferdowsi University of Mashhad using a line-source sprinkler irrigation system based on the single sprinkler installation method. To achieve the objectives of this plan, factorial experiment was performed on PGP sprinkler with regard to the two factors, the pressure of the sprinkler function (with three levels 1.6, 2.5 and 3.4 bar) and the diameter of the nozzle (with three levels of 4, 5 and 6 mm) with three replications (morning, noon and night). Assessing the result of the data variance analysis showed that the effects of pressure, aperture diameter, and time on the wind drift and evaporation losses are not significant. Investigating the main effects of these factors showed that the effect of aperture diameter on irrigation losses is significant at the level of the 1%. In order to further investigate, the comparison of mean losses data in three aperture diameter was done using Duncan′s test. The results indicated that aperture 4 with the losses of 44% had a significant difference with other diameters. This result suggests an increase in losses for smaller diameters due to the small droplets and the increase in wind drift. Also, the comparison of the mean losses data in three times showed that irrigation at noon with the losses of 44% had a significant difference compared to other times due to a significant increase in temperature and radiation of the sun and saturation vapor pressure deficit, and there is no significant difference between morning and evening irrigation. Also, analysis of variance showed that the effect of water pressure change between 1.6 and 4.3 bar does not have a significant effect on the WDEL in this sprinkler. In general, the results showed that increasing wind speed increases the losses of evaporation and wind. Also, this study suggested that changing the irrigation time in areas with hot and dry days, from day to night in summer, leads to a significant reduction of the wind drift and evaporation losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.