Here, we use a mouse model (DBA/2J) to readdress the location of insult(s) to retinal ganglion cells (RGCs) in glaucoma. We localize an early sign of axon damage to an astrocyte-rich region of the optic nerve just posterior to the retina, analogous to the lamina cribrosa. In this region, a network of astrocytes associates intimately with RGC axons. Using BAX-deficient DBA/2J mice, which retain all of their RGCs, we provide experimental evidence for an insult within or very close to the lamina in the optic nerve. We show that proximal axon segments attached to their cell bodies survive to the proximity of the lamina. In contrast, axon segments in the lamina and behind the eye degenerate. Finally, the Wlds allele, which is known to protect against insults to axons, strongly protects against DBA/2J glaucoma and preserves RGC activity as measured by pattern electroretinography. These experiments provide strong evidence for a local insult to axons in the optic nerve.
Results indicate that inner retina function in DBA/2J mice progressively decreases after 3 months of age, and it is nearly abolished by 10 to 11 months, whereas outer retina function shows little change and the RNFL thickness is relatively spared. This result suggests that surviving RGCs may not be functional. Progression of inner retinal dysfunction is strongly associated with increased IOP.
The PERG has an adequate signal-to-noise ratio, reproducibility, and dynamic range to monitor the progression of functional changes in the inner retina in DBA/2J mice.
In the DBA/2J mouse, RGC susceptibility to artificial IOP elevation increases with age. Abnormal RGC function in older mice may be improved with IOP lowering. Evaluation of PERG changes in response to artificial IOP modulation may represent a powerful tool to assess noninvasively RGCs' susceptibility to IOP insult in genetically distinct mouse models of glaucoma.
The inbred DBA/2J (D2) mouse strain is a well established model of spontaneously elevated intraocular pressure (IOP), progressive glaucomatous loss of retinal ganglion cells (RGCs), and early damage of RGC axons at the level of optic nerve head. Pattern electroretinogram (PERG) studies have shown that surviving RGCs in mice 6-12 month old may be dysfunctional. RGC dysfunction seems to be IOP-dependent, since it may be exacerbated by means of acute IOP elevation with headdown body tilt. Here we test the hypothesis that head-up body posture lowers IOP, resulting in improvement of PERG amplitude in aged D2 mice with glaucoma. We show that head-up body tilt induces age-independent IOP lowering whose magnitude increases with the angle of tilt. For a fixed angle (−60°) of head-up tilt, IOP progressively decreases with a time constant of about 5 min and stabilizes at a value lower by about 5-6 mm Hg compared to the baseline. Head-up tilt also results in an improvement of PERG amplitude in older D2 mice with glaucoma but not in younger D2 mice without glaucoma. Improvement of PERG amplitude in aged D2 mice upon head-up-induced IOP lowering is consistent with the idea that RGCs undergo a stage of IOP-dependent, reversible dysfunction before death. The head-up IOP/PERG protocol may represent a non-invasive way to probe the potential for recovery of RGC dysfunction in D2 mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.