The 2D + slab superposition model of solar wind turbulence has its theoretical foundations in nearly incompressible magnetohydrodynamics (NI MHD) in the plasma beta ∼1 or ≪1 regimes. Solar wind turbulence measurements show that turbulence in the inertial range is anisotropic, for which the superposition model offers a plausible explanation. We provide a detailed theoretical analysis of the spectral characteristics of the Elsässer variables in the 2D + NI/slab model. We find that (1) the majority 2D component has a power spectrum in perpendicular wavenumber k ⊥; (2) the strongly imbalanced minority NI/slab turbulence has power spectra and , where k z is aligned with the mean magnetic field; (3) NI/slab turbulence can exhibit a double-power-law spectrum, with the steeper part being G*(k) ∼ k −5/3 and corresponding to strong turbulence and the flatter spectrum satisfying G*(k) ∼ k −3/2 and corresponding to weak turbulence; (4) there is a critical balance regime for NI/slab turbulence that satisfies and ; and (5) the forward and backward Elsässer power spectra can have different spectral forms provided that the triple-correlation times for each are different. We use the spectral analysis to compute the total power spectra in frequency parallel to the solar wind flow for the superposition model, showing that strongly imbalanced turbulence yields an f −5/3 spectrum for all angles between the mean flow and magnetic field, and that double power laws are possible when the nonlinear and Alfvén timescales are both finite.
The origin, structure, and propagation characteristics of a switchback are compelling questions posed by Parker Solar Probe (PSP) observations of velocity spikes and magnetic field reversals. By assuming interchange reconnection between coronal loop and open magnetic field, we show that this results in the generation of upward (into the heliosphere) and downward complex structures propagating at the fast magnetosonic speed (i.e., the Alfvén speed in the low plasma beta corona) that can have an arbitrary radial magnetic field deflection, including “S-shaped.” We derive the evolution equation for the switchback radial magnetic field as it propagates through the inhomogeneous supersonic solar corona. An analytic solution for arbitrary initial conditions is used to investigate the properties of a switchback propagating from launch ∼6 to ∼35 R ⊙ where PSP observed switchbacks during its first encounter. We provide a detailed comparison to an example event, showing that the magnetic field and plasma solutions are in accord with PSP observations. For a simple single switchback, the model predicts either a single or a double-humped structure; the former corresponding to PSP observing either the main body or the flanks of the switchback. The clustering of switchbacks and their sometimes complicated structure may be due to the formation of multiple closely spaced switchbacks created by interchange reconnection with numerous open and loop magnetic field lines over a short period. We show that their evolution yields a complex, aggregated group of switchbacks that includes “sheaths” with large-amplitude radial magnetic field and velocity fluctuations.
We estimate the intensity of interstellar pickup protons accelerated to ∼50 keV at various locations along the solar-wind termination shock, using two-dimensional hybrid simulations. Parameters for the solar wind, interstellar pickup ions (PUIs), and magnetic field just upstream of the termination shock at one flank of the heliosphere, and at the location in the downwind (or tail-ward) direction are based on a solar-wind/pickup-ion/turbulence model. The parameters upstream of the shock where Voyager 2 crossed are based on observations. The simulation is limited in size, and therefore cannot accurately model the distribution to energies much beyond ∼50 keV. This is sufficient to study the origin of the high-energy tail of the distribution, which is the low-energy portion of the anomalous cosmic-ray spectrum. We also extrapolate our results to other locations along the termination shock, such as the other flank, and the poles of the heliosphere. We find that the intensity of ∼10–50 keV accelerated pickup protons is remarkably similar at all three locations we simulated, suggesting that particles in this energy range are relatively uniformly distributed along the termination shock, and are likely quite uniform throughout the entire heliosheath. In addition, we find significant differences in the distribution in the 0.5–1 keV energy range for energetic neutral atoms coming from the tail region of the heliosphere compared to that at the nose or flank look directions. This is because the peak in the PUI distribution is at a higher energy there.
Parker Solar Probe (PSP) observed a large variety of Alfvénic fluctuations in the fast and slow solar wind flow during its two perihelia. The properties of Alfvénic solar wind turbulence have been studied for decades in the near-Earth environment. A spectral index of −5/3 or −2 for magnetic field fluctuations has been observed using spacecraft measurements, which can be explained by turbulence theories of nearly incompressible magnetohydrodynamics (NI MHD) or critical balance. In this study, a rigorous search of field-aligned solar wind is applied to PSP measurements for the first time, which yields two events in the apparently slow solar wind. The parallel spectra of the magnetic fluctuations in the inertial range show a power law. Probability distributions of the magnetic field show that these events are not contaminated by intermittent structures, which, according to previous studies, are known to modify spectral properties. The results presented here are consistent with spectral predictions from NI MHD theory and further deepen our understanding of the Alfvénic solar wind turbulence near the Sun.
Voyager 1 observed Kolmogorov-like (k −5/3) compressible turbulence just upwind of the heliopause. Subsequent measurements by Voyager 1 further from the heliopause revealed that the observed fluctuations were now fully incompressible, with a k −5/3 spectrum that was essentially identical to that of the earlier compressible spectrum. Zank et al. showed that only compressible fast magnetosonic modes could be transmitted from the inner heliosheath into the very local interstellar medium (VLISM), and could exhibit a k −5/3 spectrum. We show here that the small plasma beta VLISM admits three-wave interactions between a fast magnetosonic mode, a zero-frequency mode, and an Alfvén wave. The fast magnetosonic mode is converted to an incompressible Alfvén (or zero-frequency) mode with wavenumber almost identical to that of the initial compressible fast mode. The initial compressible and generated incompressible spectra are essentially identical. For the wavelength range observed by Voyager 1, we estimate that compressible fast modes are fully mode-converted to incompressible fluctuations within ∼10 au of the heliopause. We suggest that the VLISM magnetic field spectrum is a superposition of a higher amplitude ∼k −5/3 spectrum of heliospheric origin with an estimated correlation length ∼30 au, having a minimum wavenumber ∼(100)−1 (au)−1, and a lower amplitude (possibly local) ISM k −5/3 spectrum, the latter possessing an outer scale ≥2 pc. We suggest that the transmission of compressible turbulence from an inner asterosheath into the local circumstellar interstellar medium surrounding a star, and the subsequent mode conversion to incompressible turbulence, may be a general mechanism by which stars drive turbulence in the interstellar medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.