Multiscale gyrokinetic turbulence simulations with the real ion-to-electron mass ratio and β value are realized for the first time, where the β value is given by the ratio of plasma pressure to magnetic pressure and characterizes electromagnetic effects on microinstabilities. Numerical analysis at both the electron scale and the ion scale is used to reveal the mechanism of their cross-scale interactions. Even with the real-mass scale separation, ion-scale turbulence eliminates electron-scale streamers and dominates heat transport, not only of ions but also of electrons. Suppression of electron-scale turbulence by ion-scale eddies, rather than by long-wavelength zonal flows, is also demonstrated by means of direct measurement of nonlinear mode-to-mode coupling. When the ion-scale modes are stabilized by finite-β effects, the contribution of the electron-scale dynamics to the turbulent transport becomes non-negligible and turns out to enhance ion-scale turbulent transport. Damping of the ion-scale zonal flows by electron-scale turbulence is responsible for the enhancement of ion-scale transport.
Impacts of isotope ion mass on trapped-electron-mode (TEM)-driven turbulence and zonal flows in magnetically confined fusion plasmas are investigated. Gyrokinetic simulations of TEM-driven turbulence in three-dimensional magnetic configuration of helical plasmas with hydrogen isotope ions and real-mass kinetic electrons are realized for the first time, and the linear and the nonlinear nature of the isotope and collisional effects on the turbulent transport and zonal-flow generation are clarified. It is newly found that combined effects of the collisional TEM stabilization by the isotope ions and the associated increase in the impacts of the steady zonal flows at the near-marginal linear stability lead to the significant transport reduction with the opposite ion mass dependence in comparison to the conventional gyro-Bohm scaling. The universal nature of the isotope effects on the TEM-driven turbulence and zonal flows is verified for a wide variety of toroidal plasmas, e.g., axisymmetric tokamak and non-axisymmetric helical or stellarator systems.
Nonlinear entropy transfer processes in toroidal ion temperature gradient (ITG) and electron temperature gradient (ETG) driven turbulence are investigated based on the gyrokinetic entropy balance relations for zonal and non-zonal modes, which are coupled through the entropy transfer function regarded as a kinetic extension of the zonal-flow production due to the Reynolds stress. Spectral analyses of the "triad" entropy transfer function introduced in this study reveal not only the nonlinear interactions among the zonal and non-zonal modes, but also their effects on the turbulent transport level. Different types of the entropy transfer processes between the ITG and ETG turbulence are found: the entropy transfer from non-zonal to zonal modes is substantial in the saturation phase of the ITG instability, while, once the strong zonal flow is generated, the entropy transfer to the zonal modes becomes quite weak in the steady turbulence state. Instead, the zonal flows mediate the entropy transfer from non-zonal modes with low radial-wavenumbers (with contribution to the heat flux) to the other non-zonal modes with higher radial-wavenumbers (but with less contribution to the heat flux) through the triad interaction. The successive entropy transfer processes to the higher radial-wavenumber modes are associated with transport regulation in the steady turbulence state. In contrast, in both the instability-saturation and steady phases of the ETG turbulence, the entropy transfer processes among low-wavenumber non-zonal modes are dominant rather than the transfer via zonal modes.
As the finalization of the hydrogen experiment towards the deuterium phase, the exploration of the best performance of the hydrogen plasma was intensively performed in the Large Helical Device (LHD). High ion and electron temperatures, Ti, Te, of more than 6 keV were simultaneously achieved by superimposing the high power electron cyclotron resonance heating (ECH) on the neutral beam injection (NBI) heated plasma. Although flattening of the ion temperature profile in the core region was observed during the discharges, one could avoid the degradation by increasing the electron density. Another key parameter to present plasma performance is an averaged beta value . The high regime around 4 % was extended to an order of magnitude lower than the earlier collisional regime. Impurity behaviour in hydrogen discharges with NBI heating was also classified with the wide range of edge plasma parameters. Existence of no impurity accumulation regime where the high performance plasma is maintained with high power heating > 10 MW was identified. Wide parameter scan experiments suggest that the toroidal rotation and the turbulence are the candidates for expelling impurities from the core region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.