Let G = (V,E) be a graph of order p and size q having no isolated vertices. A bijection ƒ : E → {1, 2, 3, ..., q} is called a local antimagic labeling if for all uv ∈ E we have w(u) ≠ w(v), the weight w(u) = ∑e∈E(u) f(e) where E(u) is the set of edges incident to u. A graph G is local antimagic if G has a local antimagic labeling. The local antimagic chromatic number χla(G) is defined to be the minimum number of colors taken over all colorings of G induced by local antimagic labelings of G. In this paper, we determine the local antimagic chromatic number for some wheel related graphs.
Let G = (V, E) be a simple graph and H be a subgraph of G. Then G admits an H-covering, if every edge in E(G) belongs to at least one subgraph of G that is isomorphic to H. An (a, d)-H-antimagic total labeling of G is a bijection ƒ : V (G) ∪ E(G) → {1, 2, 3, ..., |V (G)| + |E(G)|} such that for all subgraphs H’ of G isomorphic to H, the H’ weights w(H’) =∑v∈V(H’) f(v) + =∑e∈E(H’) f(e) constitute an arithmetic progression {a, a + d, a + 2d, ..., a + (n − 1)d}, where a and d are positive integers and n is the number of subgraphs of G isomorphic to H. The labeling ƒ is called a super (a, d)-H-antimagic total labeling if ƒ (V (G)) = {1, 2, 3, ..., |V (G)|}. In [9], authors have posed an open problem to characterize the super (a, d)-G+ e-antimagic total labeling of the graph Gu[Sn], where n ≥ 3 and 4 ≤ d ≤ p+q + 2. In this paper, a partial solution to this problem is obtained.
UDC 519.17
Let
G
=
(
V
,
E
)
be a graph on
p
vertices with no isolated vertices. A bijection
f
from
V
to
{
1,2
,3
,
…
,
p
}
is called a local distance antimagic labeling if, for any two adjacent vertices
u
and
v
,
we receive distinct weights (colors), where a vertex
x
has the weight
w
(
x
)
=
∑
v
ϵ
N
(
x
)
f
(
v
)
.
The local distance antimagic chromatic number
χ
l
ⅆ
a
(
G
)
is defined as the least number of colors used in any local distance antimagic labeling of
G
.
We determine the local distance antimagic chromatic number for the disjoint union of
t
copies of stars and double stars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.