Teleoperation systems have been presented to handle objects in environments in which the presence of operators are impracticable, unsafe or less effective. In this paper, a passive control strategy employing the new outputs to state synchronization of the master and slave robots is developed to attain position coordination during contact tasks. The proposed control scheme includes position signals plus force signals. However, force measurement in such applications is a major limitation. Therefore, a modified force estimation algorithm is proposed to predict external forces applied on the master and slave robots. The closed-loop bilateral teleoperation system is investigated by employing Lyapunov stability criteria. Finally, the experimental results demonstrate the efficiency of the proposed control scheme. It is observed that, in the presence of the estimated external forces in the control scheme, the slave robot follows the master position in both free and contact motion, and force reflecting occurs properly as well. Moreover, it is verified that the external forces are estimated appropriately through the proposed force estimation algorithm.
Due to their switching property included in their structure, DC-DC converters have a non-linear behavior and their controlling design is accompanied with complexities. But by employing the average method it is possible to approximate the system by linear system and exploiting linear control methods. In this paper the central method of Linear Quadratic Regulator (LQR) is employed for controlling Buck converter and improving its dynamic functioning, but determining the LQR controlling matrices is very difficult. So, genetic algorithm is employed to eliminate this obstacle. The simulation of DC-DC converter with LQR based on genetic algorithm is shown the improvement in voltage control response and the converter output current.
Control of the force exerted on an object is important for boosting system performance in robotics manipulators. Any undesired applied force may leave remarkable effects on the system, with the potential to damage the object. In addition, measuring external force is another challenge associated with such cases. Proposing an appropriate force estimation algorithm is a solution to overcome this deficiency. In this research, a control strategy is proposed to control the external force applied on the n-dof robotics. To eliminate force measurement in the controller, a force estimation strategy based on a disturbance observer is employed. Subsequently, a sliding-mode based control is implemented to cope with the force estimation error. The closed-loop stability of the system in the presence of estimated force is analytically considered. The proposed algorithm was implemented on piezoelectric actuators as the experimental setup. The experimental results confirm that by employing the proposed control scheme, precise force control is achievable. The force estimation algorithm can also suitably estimate external force.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.