The transcription factor Pax-5 occupies a central role in B cell differentiation and has been implicated in the development of B cell lymphoma. The transcriptional activation function of Pax-5 requires an intact N-terminal DNA-binding domain and is strongly influenced by the C-terminal transactivation domain. We report the identification and characterization of five human Pax-5 isoforms, which occur through the alternative splicing of exons that encode for the C-terminal transactivation domain. These isoforms arise from the inclusion or exclusion of exon 7, exon 8, and/or exon 9. Three of the Pax-5 isoforms generate novel protein sequences rich in proline, serine, and threonine amino acids that are the hallmarks of transactivation domains. The Pax-5 isoforms are expressed in peripheral blood mononuclear cells, cancerous and non-cancerous B cell lines, as well as in primary B cell lymphoma tissue. Electrophoretic mobility shift assays demonstrate that the isoforms possess specific DNA binding activity and recognize the PAX-5 consensus binding sites. In reporter assays using the CD19 promoter, the transactivation properties of the various isoforms were significantly influenced by the changes in the C-terminal protein sequence. Finally, we demonstrate, for the first time, that human Pax-5 isoform expression is modulated by specific signaling pathways in B lymphocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.