The rate of water flow through hydrophobic nanocapillaries is greatly enhanced as compared to that expected from macroscopic hydrodynamics. This phenomenon is usually described in terms of a relatively large slip length, which is in turn defined by such microscopic properties as the friction between water and capillary surfaces and the viscosity of water. We show that the viscosity of water and, therefore, its flow rate are profoundly affected by the layered structure of confined water if the capillary size becomes less than 2 nm. To this end, we study the structure and dynamics of water confined between two parallel graphene layers using equilibrium molecular dynamics simulations. We find that the shear viscosity is not only greatly enhanced for subnanometer capillaries, but also exhibits large oscillations that originate from commensurability between the capillary size and the size of water molecules. Such oscillating behavior of viscosity and, consequently, the slip length should be taken into account in designing and studying graphene-based and similar membranes for desalination and filtration.
Controlled transport of water molecules through membranes and capillaries is important in areas as diverse as water purification and healthcare technologies. Previous attempts to control water permeation through membranes (mainly polymeric ones) have concentrated on modulating the structure of the membrane and the physicochemical properties of its surface by varying the pH, temperature or ionic strength. Electrical control over water transport is an attractive alternative; however, theory and simulations have often yielded conflicting results, from freezing of water molecules to melting of ice under an applied electric field. Here we report electrically controlled water permeation through micrometre-thick graphene oxide membranes. Such membranes have previously been shown to exhibit ultrafast permeation of water and molecular sieving properties, with the potential for industrial-scale production. To achieve electrical control over water permeation, we create conductive filaments in the graphene oxide membranes via controllable electrical breakdown. The electric field that concentrates around these current-carrying filaments ionizes water molecules inside graphene capillaries within the graphene oxide membranes, which impedes water transport. We thus demonstrate precise control of water permeation, from ultrafast permeation to complete blocking. Our work opens up an avenue for developing smart membrane technologies for artificial biological systems, tissue engineering and filtration.
Van der Waals assembly of two-dimensional crystals continue attract intense interest due to the prospect of designing novel materials with on-demand properties. One of the unique features of this technology is the possibility of trapping molecules between two-dimensional crystals. The trapped molecules are predicted to experience pressures as high as 1 GPa. Here we report measurements of this interfacial pressure by capturing pressure-sensitive molecules and studying their structural and conformational changes. Pressures of 1.2±0.3 GPa are found using Raman spectrometry for molecular layers of 1-nm in thickness. We further show that this pressure can induce chemical reactions, and several trapped salts are found to react with water at room temperature, leading to two-dimensional crystals of the corresponding oxides. This pressure and its effect should be taken into account in studies of van der Waals heterostructures and can also be exploited to modify materials confined at the atomic interfaces.
The need for enhanced energy storage and improved catalysts has led researchers to explore advanced functional materials for sustainable energy production and storage. Herein, we demonstrate a reductive electrosynthesis approach to prepare a layer-by-layer (LbL) assembled trimetallic Fe−Co−Ni metal−organic framework (MOF) in which the metal cations within each layer or at the interface of the two layers are linked to one another by bridging 2-amino-1,4-benzenedicarboxylic acid linkers. Tailoring catalytically active sites in an LbL fashion affords a highly porous material that exhibits excellent trifunctional electrocatalytic activities toward the hydrogen evolution reaction (η j=10 = 116 mV), oxygen evolution reaction (η j=10 = 254 mV), as well as oxygen reduction reaction (half-wave potential = 0.75 V vs reference hydrogen electrode) in alkaline solutions. The dispersion-corrected density functional theory calculations suggest that the prominent catalytic activity of the LbL MOF toward the HER, OER, and ORR is due to the initial negative adsorption energy of water on the metal nodes and the elongated O−H bond length of the H 2 O molecule. The Fe−Co−Ni MOF-based Zn−air battery exhibits a remarkable energy storage performance and excellent cycling stability of over 700 cycles that outperform the commercial noble metal benchmarks. When assembled in an asymmetric device configuration, the activated carbon||Fe−Co−Ni MOF supercapacitor provides a superb specific energy and a power of up to 56.2 W h kg −1 and 42.2 kW kg −1 , respectively. This work offers not only a novel approach to prepare an LbL assembled multimetallic MOF but also provides a benchmark for a multifunctional electrocatalyst for water splitting and Zn−air batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.