The emission dynamics in photoexcited planar conjugated polymer waveguides is investigated at high excitation densities. Using femtosecond pump/probe experiments and photoluminescence spectroscopy we investigate the interplay of nonlinear radiative and nonradiative recombination processes. Amplified spontaneous emission (ASE) leads to an ultrafast depletion of the excited state at excitation densities above 1018 cm−3 in an ladder-type poly(p-phenylene) film deposited on a glass substrate. Owing to the different waveguide structure ASE is not observed for the same polymer deposited on an indium–tin–oxide (ITO)-coated substrate. Instead, we observe nonradiative bimolecular annihilation with a coefficient γ=4.2×10−9 cm3 s−1. Our results demonstrate that even in the absence of a resonator collective stimulated emission can be much more efficient than nonradiative recombination. A mandatory prerequisite, however, is a suitable waveguide design. The use of ITO as a hole-injecting contact is problematic due to its high refractive index and its relatively high losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.