Anthropogenic emissions of nitrogen oxides (NOx) can change rapidly due to economic growth or control measures. Bottom‐up emissions estimated using source‐specific emission factors and activity statistics require years to compile and can become quickly outdated. We present a method to use satellite observations of tropospheric NO2 columns to estimate changes in NOx emissions. We use tropospheric NO2 columns retrieved from the SCIAMACHY satellite instrument for 2003–2009, the response of tropospheric NO2 columns to changes in NOx emissions determined from a global chemical transport model (GEOS‐Chem), and the bottom‐up anthropogenic NOx emissions for 2006 to hindcast and forecast the inventories. We evaluate our approach by comparing bottom‐up and hindcast emissions for 2003. The two inventories agree within 6.0% globally and within 8.9% at the regional scale with consistent trends in western Europe, North America, and East Asia. We go on to forecast emissions for 2009. During 2006–2009, anthropogenic NOx emissions over land increase by 9.2% globally and by 18.8% from East Asia. North American emissions decrease by 5.7%.
We compare Tropospheric Emission Spectrometer (TES) version 2 (V002) nadir ozone profiles with ozonesonde profiles from the Intercontinental Chemical Transport Experiment Ozonesonde Network Study, the World Ozone and Ultraviolet Data Center, the Global Monitoring Division of the Earth System Research Laboratory, and the Southern Hemisphere Additional Ozonesonde archives. Approximately 1600 coincidences spanning 72.5°S–80.3°N from October 2004 to October 2006 are found. The TES averaging kernel and constraint are applied to the ozonesonde data to account for the TES measurement sensitivity and vertical resolution. TES sonde differences are examined in six latitude zones after excluding profiles with thick high clouds. Values for the bias and standard deviation are determined using correlations of mean values of TES ozone and sonde ozone in the upper troposphere (UT) and lower troposphere (LT). The UT biases range from 2.9 to 10.6 ppbv, and the LT biases range from 3.7 to 9.2 ppbv, excluding the Arctic and Antarctic LT where TES sensitivity is low. A similar approach is used to assess seasonal differences in the northern midlatitudes where the density and frequency of sonde measurements are greatest. These results are briefly compared to TES V001 ozone validation work which also used ozonesondes but was carried out prior to improvements in the radiometric calibration and ozone retrieval in V002. Overall, the large number of TES and sonde comparisons indicate a positive bias of approximately 3–10 ppbv for the TES V002 nadir ozone data set and have helped to identify areas of potential improvement for future retrieval versions.
[1] We present validation studies of MLS version 2.2 upper tropospheric and stratospheric ozone profiles using ozonesonde and lidar data as well as climatological data. Ozone measurements from over 60 ozonesonde stations worldwide and three lidar stations are compared with coincident MLS data. The MLS ozone stratospheric data between 150 and 3 hPa agree well with ozonesonde measurements, within 8% for the global average. MLS values at 215 hPa are biased high compared to ozonesondes by $20% at middle to high latitude, although there is a lot of variability in this altitude region. Comparisons between MLS and ground-based lidar measurements from Mauna Loa, Hawaii, from the Table Mountain Facility, California, and from the Observatoire de HauteProvence, France, give very good agreement, within $5%, for the stratospheric values. The comparisons between MLS and the Table Mountain Facility tropospheric ozone lidar show that MLS data are biased high by $30% at 215 hPa, consistent with that indicated by the ozonesonde data. We obtain better global average agreement between MLS and ozonesonde partial column values down to 215 hPa, although the average MLS values at low to middle latitudes are higher than the ozonesonde values by up to a few percent. MLS
The most extensive set of free tropospheric ozone measurements ever compiled across midlatitude North America was measured with daily ozonesondes, commercial aircraft and a lidar at 14 sites during July-August 2004. The model estimated stratospheric ozone was subtracted from all profiles, leaving a tropospheric residual ozone. On average the upper troposphere above midlatitude eastern North America contained 15 ppbv more tropospheric residual ozone than the more polluted layer between the surface and 2 km above sea level. Lowest ozone values in the upper troposphere were found above the two upwind sites in California. The upper troposphere above midlatitude eastern North America contained 16 ppbv more tropospheric residual ozone than the upper troposphere above three upwind sites, with the greatest enhancement above Houston, Texas, at 24 ppbv. Upper tropospheric CO measurements above east Texas show no statistically significant enhancement compared to west coast measurements, arguing against a strong influence from fresh surface anthropogenic emissions to the upper troposphere above Texas where the ozone enhancement is greatest. Vertical mixing of ozone from the boundary layer to the upper troposphere can only account for 2 ppbv of the 16 ppbv ozone enhancement above eastern North America; therefore the remaining 14 ppbv must be the result of in situ ozone production. The transport of NOx tracers from North American anthropogenic, biogenic, biomass burning, and lightning emissions was simulated for the upper troposphere of North America with a particle dispersion model. Additional box model calculations suggest the 24 ppbv ozone enhancement above Houston can be produced over a 10 day period from oxidation reactions of lightning NOx and background mixing ratios of CO and CH4. Overall, we estimate that 69–84% (11–13 ppbv) of the 16 ppbv ozone enhancement above eastern North America is due to in situ ozone production from lightning NOx with the remainder due to transport of ozone from the surface or in situ ozone production from other sources of NOx
The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit, providing continuous observations within the field of view. To fulfill the mandate and address the challenge put forth by the NRC, two GEO-CAPE Science Working Groups (SWGs), representing the atmospheric composition and ocean color disciplines, have developed realistic science objectives using input drawn from several community workshops. The GEO-CAPE mission will take advantage of this revolutionary advance in temporal frequency for both of these disciplines. Multiple observations per day are required to explore the physical, chemical, and dynamical processes that determine tropospheric composition and air quality over spatial scales ranging from urban to continental, and over temporal scales ranging from diurnal to seasonal. Likewise, high-frequency satellite observations are critical to studying and quantifying biological, chemical, and physical processes within the coastal ocean. These observations are to be achieved from a vantage point near 95°–100°W, providing a complete view of North America as well as the adjacent oceans. The SWGs have also endorsed the concept of phased implementation using commercial satellites to reduce mission risk and cost. GEO-CAPE will join the global constellation of geostationary atmospheric chemistry and coastal ocean color sensors planned to be in orbit in the 2020 time frame.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.