Reproductive cycle of seasonally breeding fish is synchronized with changes of photoperiod and temperature in environment. We hypothesize that arginine vasotocin (AVT) and isotocin (IT) are involved in timing and synchronization of seasonal reproductive activity in the round goby (Neogobius melanostomus). To verify this hypothesis, we examined the annual profiles of brain AVT and IT in round goby males and females in relation to their reproductive cycle. Wild round gobies were exposed to annual environmental changes in their natural habitats from where they were sampled monthly over a year. AVT and IT were measured using HPLC with fluorescence detection preceded by solid-phase extraction. This study shows seasonal variations in brain AVT and IT levels. Profiles of changes were similar in males and females: the peak of AVT was observed before spawning in March-April, whereas that of IT during spawning in May-June. Furthermore, the lowest AVT level was noted out of breeding season from November to January, while the level of IT decreased immediately at the end of the spawning. The results show that high AVT levels correlate with pre-spawning period whereas the highest IT levels correspond to spawning. A significant decline in AVT and IT in non-spawning season coincided with the quiescent phase of gametogenesis in both sexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.