Memristive devices have become promising candidates to complement and/or replace the CMOS technology, due to their CMOS manufacturing process compatibility, zero standby power consumption, high scalability, as well as their capability to implement high-density memories and new computing paradigms. Despite these advantages, memristive devices are also susceptible to manufacturing defects that may cause different faulty behaviors not observed in CMOS technology, significantly increasing the manufacturing test complexity. This work proposes a Design-for-Testability (DfT) strategy based on the introduction of a on-chip sensor that measures the current consumption of Resistive Random Access Memories (RRAMs) cells to provide the detection of unique faults. The new On-Chip Sensor (ON CS) was validated using a case study 3x3 RRAM cell array with peripheral circuitry implemented based on a 130 nm Predictive Technology Model (PTM) library. Experimental results show that the proposed DfT strategy is able to detect not only traditional faults, but also unique faults that can affect RRAM cells. Finally, this paper proposes an DfT strategy that can detect unique faults with an unique operation and can be used during the normal operation of a RRAM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.