We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice core measurements. We use a new dataset of wet deposition for 2000–2002 based on critical assessment of the quality of existing regional network data. We show that for present day (year 2000 ACCMIP time slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of approximately 50 Tg(N) yr−1 from nitrogen oxide emissions, 60 Tg(N) yr−1 from ammonia emissions, and 83 Tg(S) yr−1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards a potential misrepresentation of 1980 NH3 emissions over North America. Based on ice core records, the 1850 deposition fluxes agree well with Greenland ice cores, but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways (RCPs) to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double their 2000 counterpart in some scenarios and reaching > 1300 mg(N) m−2 yr−1 averaged over regional to continental-scale regions in RCP 2.6 and 8.5, ~ 30–50% larger than the values in any region currently (circa 2000). However, sulfur deposition rates in 2100 are in all regions lower than in 2000 in all the RCPs. The new ACCMIP multi-model deposition dataset provides state-of-the-science, consistent and evaluated time slice (spanning 1850–2100) global gridded deposition fields for use in a wide range of climate and ecological studies
Abstract. Airborne photogrammetry is undergoing a renaissance: lower-cost equipment, more powerful software, and simplified methods have significantly lowered the barriers to entry and now allow repeat mapping of cryospheric dynamics at spatial resolutions and temporal frequencies that were previously too expensive to consider. Here we apply these advancements to the measurement of snow depth from manned aircraft. Our main airborne hardware consists of a consumer-grade digital camera directly coupled to a dual-frequency GPS; no inertial motion unit (IMU) or on-board computer is required, such that system hardware and software costs less than USD 30 000, exclusive of aircraft. The photogrammetric processing is done using a commercially available implementation of the structure from motion (SfM) algorithm. The system is simple enough that it can be operated by the pilot without additional assistance and the technique creates directly georeferenced maps without ground control, further reducing overall costs. To map snow depth, we made digital elevation models (DEMs) during snow-free and snow-covered conditions, then subtracted these to create difference DEMs (dDEMs). We assessed the accuracy (real-world geolocation) and precision (repeatability) of our DEMs through comparisons to ground control points and to time series of our own DEMs. We validated these assessments through comparisons to DEMs made by airborne lidar and by a similar photogrammetric system. We empirically determined that our DEMs have a geolocation accuracy of ±30 cm and a repeatability of ±8 cm (both 95 % confidence). We then validated our dDEMs against more than 6000 hand-probed snow depth measurements at 3 separate test areas in Alaska covering a wide-variety of terrain and snow types. These areas ranged from 5 to 40 km2 and had ground sample distances of 6 to 20 cm. We found that depths produced from the dDEMs matched probe depths with a 10 cm standard deviation, and were statistically identical at 95 % confidence. Due to the precision of this technique, other real changes on the ground such as frost heave, vegetative compaction by snow, and even footprints become sources of error in the measurement of thin snow packs (< 20 cm). The ability to directly measure such small changes over entire landscapes eliminates the need to extrapolate limited field measurements. The fact that this mapping can be done at substantially lower costs than current methods may transform the way we approach studying change in the cryosphere.
Summary A 12.7 m long sedimentary record recovered from Lake El'gygytgyn, located in a meteorite impact crater created 3.6 Ma in Late Cretaceous igneous rocks on Chukotka Peninsula, northeast Siberia, has been analysed for its palaeo‐ and rock‐magnetic properties. Continuous high resolution (1 mm) measurements of magnetic susceptibility yielded successions of pronounced lows and highs. Analyses of the rock‐magnetic properties by low and high temperature runs of magnetic susceptibility, determination of hysteresis parameters as well as IRM acquisition experiments, yielded a dominance of PSD (pseudo‐single domain) magnetite in intervals of high magnetic susceptibility, whereas, due to selective magnetite dissolution associated with anoxic Lake water and/or pore water conditions during times of enhanced deposition of organic matter, haematite dominates within low susceptibility intervals in terms of mass percentage. Here however, magnetic properties are still dominated by magnetite. Five AMS (accelerator mass spectromentry) 14C ages, eight IRSL (infrared stimulated luminescense) ages together with preliminary pollen data suggest that variations in magnetite content reflect climatic variability of the last ∼300 ka with low (high) susceptibilities representing cold (warm) climates. This pattern, caused by a complex system of deposition, preservation or decomposition of organic matter and/or magnetic minerals, in turn can be correlated in detail to global climate archives such as the oxygen isotope records from Greenland ice cores and marine sediments, respectively. Thus, the sedimentary sequence recovered from Lake El'gygytgyn represents the longest continuous terrestrial climate record now available from the Arctic.
[1] A time series of more than 450 combined ERS-2, Radarsat-1, and Landsat-7 scenes acquired between 1998 and 2001 was analyzed to develop a fairly complete picture of lake ice dynamics on Lake El'gygytgyn, NE Siberia (67.5°N, 172°E). This 14-km 3 lake partially fills a meteorite impact crater formed 3.6 million years ago and is home to a paleoenvironmental coring project. The duration of lake ice cover and the onset of lake ice breakup are important both to interpretations of the archived sediment core record and to future drilling projects that will use the ice as a stable platform. Ice formation, snowmelt, and ice breakup likely occur in late October, mid-May, and early July, respectively. These data were used to validate a one-dimensional energy-balance lake ice model, which can now be used to hindcast paleoclimate based on core proxy information. Synthetic aperture radar (SAR) backscatter from the lake ice also revealed unusual spatial variations in bubble content, which were found to indicate the level of biological productivity in the sediments directly beneath the ice, with the highest productivity located in the shallowest (0-10 m) as well as the deepest (170-175 m) regions of the lake. Seismic data indicates that the backscatter anomaly above the deepest water is collocated with the central peak of the impact crater, 500 m below the surface. Several hypotheses are presented to explain this anomaly. Regardless of cause, the fact that large spatial variations in biological productivity exist in the lake has important implications for selecting the locations of future sediment cores.INDEX TERMS: 1640 Global Change: Remote sensing; 1845 Hydrology: Limnology; 1630 Global Change: Impact phenomena; 1863 Hydrology: Snow and ice (1827); 1878 Hydrology: Water/energy interactions; 1615 Global Change: Biogeochemical processes (4805); KEYWORDS: lake ice, energy balance, lake modeling, Chukotka, Russia, climate Citation: Nolan, M., G. Liston, P. Prokein, J. Brigham-Grette, V. L. Sharpton, and R. Huntzinger, Analysis of lake ice dynamics and morphology on Lake El'gygytgyn, NE Siberia, using synthetic aperture radar (SAR) and Landsat,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.