Tarap seed (Artocarpus odoratissimus) is one of the popular snacks among Borneo Island people especially in Sabah, Malaysia. Their flesh and seed are such a potential food source but they are not fully exploited. Therefore, this study was conducted to determine its nutritional composition, mineral content and functional properties of Tarap seed flour (TSF). The proximate analysis (protein, carbohydrate, fat, crude fiber, ash, moisture), minerals content and functional properties (powder particle size, bulk density, oil and water absorption capacity, emulsion capacity, foaming ability, least gelling concentration, swelling ability and pasting properties) were determined. The proximate analysis results obtained showed that TSF had 49.65% carbohydrate, 15.60% crude fat, 12.3% crude fibers, 8.8% crude protein, 1.17 % ash and 12.5% moisture. Most abundant mineral found in Tarap flour was potassium, followed by magnesium, calcium, and natrium. The results showed that TSF has an average particle size of 166.02µm with low bulk density (0.57g/cm 3 ) as compared to wheat flour. Water and oil absorption capacities of TSF were 2.61 and 1.69g/g, respectively, while the efficiency of emulsification was 14.8%. Least gelation concentration was found to be 12% while foaming ability was 7%. Swelling ability results showed a steady increment from 60°C to 70°C but sharp increased observed from 70°C to 80°C. From the results presented, it can be concluded that TSF has a great potential for use in the formulation of composite flours to be used as ingredients in the food industry.
The objective of the research was to investigate the physicochemical characteristics of Tarap fruit starch. In this study, young Tarap fruit starch was extracted and the percentage of total starch, resistant starch, amylose and amylopectin were determined. Scanning electron microscope was used to evaluate the morphological features of the starch granule. Swelling, pasting, gelatinization, retrogradation and in vitro digestibility were also investigated. A total of 17.85% starch was successfully extracted from unripe Tarap fruit, whereas the amount of total starch and resistant starch were 89.14% and 47.82%, respectively. The amounts of rapid digestible starch and slowly digestible starch were 6.58% and 23.25%, respectively. Results found that the amylopectin content was higher than amylose (77.15% and 11.97%). The starch granules were round and polygon in shapes with smooth surfaces. The average of starch granules size was range from 6.50 to 8.30 μm with 7.4 μm of mean granule diameter. Pasting properties showed that peak viscosity was observed at about 6.5 min at 73.5oC. Tarap starch gelatinization temperatures (onset, 71.63°C; peak, 74.56°C; conclusion, 78.24°C) and enthalpy of gelatinization (ΔHgel) (3.74 J/g) were higher while the retrograded starches show lower retrogradation temperature and enthalpy than native starches. Unripe Tarap starch showed good potential to be utilized as adhesives and thickener for industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.