With the advent of the Heliophysics/Geospace System Observatory (H/GSO), a complement of multi-spacecraft missions and ground-based observatories to study the space environment, data retrieval, analysis, and visualization of space physics data can be daunting. The Space Physics Environment Data Analysis System (SPEDAS), a grass-roots software development platform ( www.spedas.org ), is now officially supported by NASA Heliophysics as part of its data environment infrastructure. It serves more than a dozen space missions and ground observatories and can integrate the full complement of past and upcoming space physics missions with minimal resources, following clear, simple, and well-proven guidelines. Free, modular and configurable to the needs of individual missions, it works in both command-line (ideal for experienced users) and Graphical User Interface (GUI) mode (reducing the learning curve for first-time users). Both options have “crib-sheets,” user-command sequences in ASCII format that can facilitate record-and-repeat actions, especially for complex operations and plotting. Crib-sheets enhance scientific interactions, as users can move rapidly and accurately from exchanges of technical information on data processing to efficient discussions regarding data interpretation and science. SPEDAS can readily query and ingest all International Solar Terrestrial Physics (ISTP)-compatible products from the Space Physics Data Facility (SPDF), enabling access to a vast collection of historic and current mission data. The planned incorporation of Heliophysics Application Programmer’s Interface (HAPI) standards will facilitate data ingestion from distributed datasets that adhere to these standards. Although SPEDAS is currently Interactive Data Language (IDL)-based (and interfaces to Java-based tools such as Autoplot), efforts are under-way to expand it further to work with python (first as an interface tool and potentially even receiving an under-the-hood replacement). We review the SPEDAS development history, goals, and current implementation. We explain its “modes of use” with examples geared for users and outline its technical implementation and requirements with software developers in mind. We also describe SPEDAS personnel and software management, interfaces with other organizations, resources and support structure available to the community, and future development plans. Electronic Supplementary Material The online version of this article (10.1007/s11214-018-0576-4) contains supplementary material, which is available to authorized users.
[1] We have obtained a state-of-the-art picture of substorm-associated evolution of the near-Earth magnetotail and the inner magnetosphere for understanding the substorm triggering mechanism. We performed superposed epoch analysis of Geotail, Polar, and GOES data with 2-min resolution, utilizing a total of 3787 substorms for each of which auroral breakup was determined from Polar UVI or IMAGE FUV auroral imager data. The decrease of the north-south magnetic field associated with plasmoids and the initial total pressure decrease suggest that the magnetic reconnection first occurs in the premidnight tail, on average, at X $ À16 to À20 R E at least 2 min before auroral onset. The magnetic reconnection site is located near the tailward edge of a region of considerably taillike magnetic field lines and intense cross-tail current, which extends from X $ À5 to À20 R E in the premidnight sector. Then the plasmoid substantially evolves tailward of X $ À20 R E immediately after onset. Almost simultaneously with the magnetic reconnection, the dipolarization begins first at X $ À7 to À10 R E 2 min before onset. The dipolarization region then expands tailward as well as in the dawn-dusk directions and earthward. We find that the total pressure generally enhances in association with the dipolarization, with the contribution of high-energy particles. Also, energy release is more significant between the regions of the magnetic reconnection and the initial dipolarization. The present results will be helpful as a reference guide to developing the overall picture of magnetotail evolution and studying the causal relationship between the magnetic reconnection and the dipolarization as well as detailed mechanisms of each of the two processes on the basis of multispacecraft observations.
The radial mode structure of Pi2 pulsations in the inner magnetosphere (L < 7) and its relation to the plasmapause are studied using data acquired by the Combined Release and Radiation Effects Satellite (CRRES) between August 1990 and September 1991. Low‐latitude Pi2 pulsations detected on the ground at Kakioka (L = 1.25) are used as the reference signal to determine the relative amplitude and phase of the electric field oscillations detected at CRRES. The plasmapause is identified using electron density inferred from the plasma wave spectra observed on CRRES. Pi2 events at CRRES are defined to be 10‐min intervals of high coherence between oscillations in the Kakioka horizontal northward magnetic field (H) and CRRES dusk‐to‐dawn electric field (Eφ) components within the Pi2 band (6–25 mHz). The Eφ component represents the poloidal oscillation of the geomagnetic field lines for satellite local times near midnight. Fifty‐five high‐coherence Eφ‐H Pi2 events occurred when both CRRES and Kakioka were within 3 hours of magnetic midnight. For these events CRRES was on L shells ranging from 2 to 6.5 and was either in the plasmasphere or in the close vicinity of the plasmapause, providing evidence for the plasmaspheric origin of low‐latitude Pi2 pulsations. The amplitude of Eφ varied significantly but there is an indication of a maximum near L = 4. The phase of Eφ (relative to Kakioka H) remained near −90° at all distances. These properties are consistent with the radial structure of the fundamental cavity mode oscillations confined in the plasmasphere. For some events observed at L > 3.5 it was also possible to determine the amplitude and phase of the compressional component Bz at CRRES. In contrast to Eφ, the phase of Bz (relative to H) was clustered both at ∼180° and ∼0 for events occurring near the plasmapause. This observation still is consistent with the cavity mode according to a numerical simulation using a dipole magnetic field and a realistic plasmapause plasma density structure, which indicates that the node of Bz is located near the plasmapause. Depending on the satellite position relative to the node, the phase can be either –180° or 0. A negative correlation is found between the Pi2 frequency and the distance of the plasmapause, which is additional support for the cavity mode origin of low‐latitude Pi2 pulsations.
The fluxgate magnetometer for the Arase (ERG) spacecraft mission was built to investigate particle acceleration processes in the inner magnetosphere. Precise measurements of the field intensity and direction are essential in studying the motion of particles, the properties of waves interacting with the particles, and magnetic field variations induced by electric currents. By observing temporal field variations, we will more deeply understand magnetohydrodynamic and electromagnetic ion-cyclotron waves in the ultra-low-frequency range, which can cause production and loss of relativistic electrons and ring-current particles. The hardware and software designs of the Magnetic Field Experiment (MGF) were optimized to meet the requirements for studying these phenomena. The MGF makes measurements at a sampling rate of 256 vectors/s, and the data are averaged onboard to fit the telemetry budget. The magnetometer switches the dynamic range between ± 8000 and ± 60,000 nT, depending on the local magnetic field intensity. The experiment is calibrated by preflight tests and through analysis of in-orbit data. MGF data are edited into files with a common data file format, archived on a data server, and made available to the science community. Magnetic field observation by the MGF will significantly improve our knowledge of the growth and decay of radiation belts and ring currents, as well as the dynamics of geospace storms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.