We have studied the structural and superconducting properties of β-FeSe under pressures up to 26 GPa using synchrotron radiation and diamond anvil cells. The bulk modulus of the tetragonal phase is 28.5(3) GPa, much smaller than the rest of Fe based superconductors. At 12 GPa we observe a phase transition from the tetragonal to an orthorhombic symmetry. The high-pressure orthorhombic phase has a higher Tc reaching 34 K at 22 GPa.
We have synthesized for the first time the metastable compound 1T-CrTe2. We have done its complete structural characterization and measured its magnetization, specific heat and electrical resistivity between 4 and 330 K. We have also performed detailed band structure calculations. We have found that it crystallizes in the CdI2 structure type and that its electrical resistance follows a metallic behaviour below room temperature. Its magnetization and specific heat curves show that the compound has a transition to a ferromagnetic state at TC = 310 K, with the magnetic moments ordered parallel to the basal plane. From the specific heat measurements and the ferromagnetic solutions obtained from our DFT calculations, we conclude that the ferromagnetism is of itinerant nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.