In this article, we investigate some exact wave solutions to the higher dimensional time-fractional Schrodinger equation, an important equation in quantum mechanics. The fractional Schrodinger equation further precisely describes the quantum state of a physical system changes in time. In order to determine the solutions a suitable transformation is considered to transmute the equations into a simpler ordinary differential equation (ODE) namely fractional complex transformation. We then use the modified simple equation (MSE) method to obtain new and further general exact wave solutions. The MSE method is more powerful and can be used in other works to establish completely new solutions for other kind of nonlinear fractional differential equations arising in mathematical physics. The affect of obtaining parameters for its definite values which are examined from the solutions of two dimensional and three dimensional time-fractional Schrodinger equations are discussed and therefore might be useful in different physical applications where the equations arise in this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.