The Global Fire Assimilation System (GFASv1.0) calculates biomass burning emissions by assimilating Fire Radiative Power (FRP) observations from the MODIS instruments onboard the Terra and Aqua satellites. It corrects for gaps in the observations, which are mostly due to cloud cover, and filters spurious FRP observations of volcanoes, gas flares and other industrial activity. The combustion rate is subsequently calculated with land cover-specific conversion factors. Emission factors for 40 gas-phase and aerosol trace species have been compiled from a literature survey. The corresponding daily emissions have been calculated on a global 0.5° × 0.5° grid from 2003 to the present. General consistency with the Global Fire Emission Database version 3.1 (GFED3.1) within its accuracy is achieved while maintaining the advantages of an FRP-based approach: GFASv1.0 makes use of the quantitative information on the combustion rate that is contained in the observations, and it detects fires in real time at high spatial and temporal resolution. GFASv1.0 indicates omission errors in GFED3.1 due to undetected small fires. It also exhibits slightly longer fire seasons in South America and North Africa and a slightly shorter fire season in Southeast Asia. GFASv1.0 has already been used for atmospheric reactive gas simulations in an independent study, which found good agreement with atmospheric observations. We have performed simulations of the atmospheric aerosol distribution with and without the assimilation of MODIS aerosol optical depth (AOD). They indicate that the emissions of particulate matter need to be boosted with a factor of 2–4 to reproduce the global distribution of organic matter and black carbon. This discrepancy is also evident in the comparison of previously published top-down and bottom-up estimates. For the time being, a global enhancement of the particulate matter emissions by 3.4 is recommended. Validation with independent AOD and PM<sub>10</sub> observations recorded during the Russian fires in summer 2010 show that the global Monitoring Atmospheric Composition and Change (MACC) aerosol model with GFASv1.0 aerosol emissions captures the smoke plume evolution well when organic matter and black carbon are enhanced by the recommended factor. In conjunction with the assimilation of MODIS AOD, the use of GFASv1.0 with enhanced emission factors quantitatively improves the forecast of the aerosol load near the surface sufficiently to allow air quality warnings with a lead time of up to four days
Abstract. We investigated smoke emissions from fires in savanna, forest, and agricultural ecosystems by airborne sampling of plumes close to prescribed burns and incidental fires in southern Africa. Aerosol samples were collected on glass fiber filters and on stacked filter units, consisting of a Nuclepore prefilter for particles larger than -• 1-2 gm and a Teflon second filter stage for the submicron fraction. The samples were analyzed for soluble ionic components, organic carbon, and black carbon. Onboard the research aircraft, particle number and volume distributions as a function of size were determined with a laser-optical particle counter and the black carbon content of the aerosol with an aethalometer. We determined the emission ratios (relative to CO2 and CO) and emission factors (relative to the amount of biomass burnt) for the various aerosol constituents. The smoke aerosols were rich in organic and black carbon, the latter representing 10-30% of the aerosol mass. K + and NH• were the dominant cationic species in the smoke of most fires, while C1-and so•-were the most important anions. The aerosols were unusually rich in CI-, probably due to the high C1 content of the semiarid vegetation. Comparison of the element budget of the fuel before and after the fires shows that the fraction of the elements released during combustion is highly variable between elements. In the case of the halogen elements, almost the entire amount released during the fire is present in the aerosol phase, while in the case of C, N, and S, only a small proportion ends up as particulate matter. This suggests that the latter elements are present predominantly as gaseous species in the fresh fire plumes studied here.
[1] The cloud-nucleating properties of the atmospheric aerosol were studied in an area under strong influence of vegetation burning. The measurements were part of Large-Scale Biosphere Atmosphere Experiment in Amazonia-Smoke Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC) and were carried out at a ground site located in the state of Rondônia in southwestern Amazonia, Brazil, September to November 2002, covering the dry season, a transition period, and the onset of the wet season. The concentrations of cloud condensation nuclei (CCN) were measured with a static thermal gradient CCN counter for supersaturations ranging between 0.23 and 1.12%. As a closure test, the CCN concentrations were predicted with a time resolution of 10 min from measurements of the dry particle number size distribution (3-850 nm, Differential Mobility Analyzer (DMPS)) and hygroscopic growth at 90% relative humidity (Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA)). No chemical information was needed. The predicted and measured CCN concentrations were highly correlated (r 2 = 0.97-0.99), and the predictions were only slightly lower than those measured, typically by 15-20%. Parameterizations of the predicted CCN concentrations are given for each of the three meteorological periods. These are based on averages taken during the afternoon hours when the measurements at ground level were representative for the aerosol entering the base of convective clouds. Furthermore, a more detailed parameterization including the mixing state of the aerosol is given, where the hygroscopic properties are expressed as the number of soluble ions or nondissociating molecules per unit volume dry particle.
Abstract. We estimated the isoprene and monoterpene source strengths of a pristine tropical forest north of Manaus in the central Amazon Basin using three different micrometeorological flux measurement approaches. During the early dry season campaign of the Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001), a tower-based surface layer gradient (SLG) technique was applied simultaneously with a relaxed eddy accumulation (REA) system. Airborne measurements of vertical profiles within and above the convective boundary layer (CBL) were used to estimate fluxes on a regional scale by application of the mixed layer gradient (MLG) technique. The mean daytime fluxes of organic carbon measured by REA were 2.1 mg C m−2 h−1 for isoprene, 0.20 mg C m−2 h−1 for α-pinene, and 0.39 mg C m−2 h−1 for the sum of monoterpenes. These values are in reasonable agreement with fluxes determined with the SLG approach, which exhibited a higher scatter, as expected for the complex terrain investigated. The observed VOC fluxes are in good agreement with simulations using a single-column chemistry and climate model (SCM). In contrast, the model-derived mixing ratios of VOCs were by far higher than observed, indicating that chemical processes may not be adequately represented in the model. The observed vertical gradients of isoprene and its primary degradation products methyl vinyl ketone (MVK) and methacrolein (MACR) suggest that the oxidation capacity in the tropical CBL is much higher than previously assumed. A simple chemical kinetics model was used to infer OH radical concentrations from the vertical gradients of (MVK+MACR)/isoprene. The estimated range of OH concentrations during the daytime was 3–8×106 molecules cm−3, i.e., an order of magnitude higher than is estimated for the tropical CBL by current state-of-the-art atmospheric chemistry and transport models. The remarkably high OH concentrations were also supported by results of a simple budget analysis, based on the flux-to-lifetime relationship of isoprene within the CBL. Furthermore, VOC fluxes determined with the airborne MLG approach were only in reasonable agreement with those of the tower-based REA and SLG approaches after correction for chemical decay by OH radicals, applying a best estimate OH concentration of 5.5×106 molecules cm−3. The SCM model calculations support relatively high OH concentration estimates after specifically being constrained by the mixing ratios of chemical constituents observed during the campaign. The relevance of the VOC fluxes for the local carbon budget of the tropical rainforest site during the measurements campaign was assessed by comparison with the concurrent CO2 fluxes, estimated by three different methods (eddy correlation, Lagrangian dispersion, and mass budget approach). Depending on the CO2 flux estimate, 1–6% or more of the carbon gained by net ecosystem productivity appeared to be re-emitted through VOC emissions.
Abstract. Spectral measurements of the aerosol particle scattering coefficient a•. and the aerosol optical depth ro were conducted at Ouranoupolis (Greece, 40ø23'N, 23ø57'E) and at Sde Boker (Israel, 30ø5 I'N, 34ø47'E) between June and September 1998. Measurements were related to 5-day three-dimensional back trajectories at 950, 850, and 550 hPa to assess the influence of long-range transport from particular source regions to the aerosol load at the two sites. Our measurements show that the eastern Mediterranean basin is moderately to highly polluted during summer. Daily average ors values at 550 nm were typically in the range of 30-200 Mm '• at both sites. The range obtained for the summer regional aerosol optical depth ro was 0.03-0.52 at 500 nm. Enhanced aerosol extinction was related to transport of polluted air masses from western and eastern Europe. High-altitude transport of mineral dust from northern Africa was observed at both sites, particularly in Israel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.