Nonsteroidal anti-inflammatory drugs are used as supportive therapy with antimicrobial treatments for mastitis in cows to alleviate pain of the inflamed mammary gland. They act mainly by inhibition of cyclooxygenases. Meloxicam (MEL) is a drug designed for cyclooxygenase-2 selectivity, which is upregulated upon inflammation, acting as a key enzyme for the conversion of arachidonic acid to prostaglandins. Although some studies in dairy cows showed positive results in recovery from mastitis when MEL was added to the treatments, direct effects of MEL on the immune system of mastitic cows are unknown. The aim of this study was to investigate effects of MEL on the immune response of bovine mammary epithelial cells (MEC) with or without simultaneous immune stimulation by pathogen-associated molecular patterns of common mastitis pathogens. Mammary epithelial cells from 4 cows were isolated and cultured. To evaluate dose effects of MEL, MEC were challenged with or without 0.2 µg/mL lipopolysaccharide (LPS; serotype O26:B6 from Escherichia coli) with addition of increasing concentrations of MEL (0, 0.25, 0.5, 1.0, 1.5, or 2.0 mg/mL). The addition of MEL prevented the increase of mRNA expression of key inflammatory factors in LPS-challenged MEC in a dose-dependent manner. To investigate the effects of MEL on pathogen-specific immune responses of MEC, treatments included challenges with LPS from E. coli and lipoteichoic acid from Staphylococcus aureus with or without 1.5 mg/mL MEL for 3, 6, and 24 h. Meloxicam prevented the increase of mRNA abundance of key inflammatory mediators in response to LPS and lipoteichoic acid, such as tumor necrosis factor, serum amyloid A, inducible nitric oxide synthase, and the chemokines IL-8 and CXC chemokine ligands 3 and 5. The prostaglandin E 2 synthesis in challenged and nonchallenged cells was reduced by MEL within 24 h. Furthermore, MEL reduced the viability and consequently the total RNA yield of the cells. However, mRNA abundance of apoptosis-related enzymes was not affected by any treatment. Meloxicam had clear dose-dependent effects on the immune response of MEC to pathogen-associated molecular patterns of common mastitis pathogens by preventing increased expression of important factors involved in inflammation. This nonsteroidal anti-inflammatory drug also has detrimental effects on cell viability. How these effects would influence the elimination of pathogens from an infected mammary gland during mastitis therapy with meloxicam needs to be further investigated.
Subclinical (SCK) and clinical (CK) ketosis are metabolic disorders responsible for big losses in dairy production. Although Fourier-transform mid-infrared spectrometry (FTIR) to predict ketosis in cows exposed to great metabolic stress was studied extensively, little is known about its suitability in predicting hyperketonemia using individual samples, e.g. in small dairy herds or when only few animals are at risk of ketosis. The objective of the present research was to determine the applicability of milk metabolites predicted by FTIR spectrometry in the individual screening for ketosis. In experiment 1, blood and milk samples were taken every two weeks after calving from Holstein (n = 80), Brown Swiss (n = 72) and Swiss Fleckvieh (n = 58) cows. In experiment 2, cows diagnosed with CK (n = 474) and 420 samples with blood β-hydroxybutyrate [BHB] <1.0 mmol/l were used to investigate if CK could be detected by FTIR-predicted BHB and acetone from a preceding milk control. In experiment 3, correlations between data from an in farm automatic milk analyser and FTIR-predicted BHB and acetone from the monthly milk controls were evaluated. Hyperketonemia occurred in majority during the first eight weeks of lactation. Correlations between blood BHB and FTIR-predicted BHB and acetone were low (r = 0.37 and 0.12, respectively, P < 0.0001), as well as the percentage of true positive values (11.9 and 16.6%, respectively). No association of FTIR predicted ketone bodies with the interval of milk sampling relative to CK diagnosis was found. Data obtained from the automatic milk analyser were moderately correlated with the same day FTIR-predicted BHB analysis (r = 0.61). In conclusion, the low correlations with blood BHB and the small number of true positive samples discourage the use of milk mid-infrared spectrometry analyses as the only method to predict hyperketonemia at the individual cow level.
Nonsteroidal anti-inflammatory drugs (NSAID) are commonly used in combination with antimicrobial mastitis treatments to reduce pain. Little is known about whether meloxicam, an NSAID designed for the preferential inhibition of cyclooxygenase-2 over cyclooxygenase-1, affects the mammary immune response. The objective of this study was to analyze the mammary immune response to intramammary (local) or intravenous (systemic) administration of meloxicam with or without immune activation by lipopolysaccharide (LPS). We challenged 108 quarters of 30 cows with or without a low or high dose of LPS from Escherichia coli (0.1 or 0.2 µg/quarter), with or without meloxicam via intramammary administration (50 mg/quarter) or intravenous injection (0.5 mg/kg of body weight; ~300 mg/cow). Intramammary administration of meloxicam alone did not trigger an acute inflammatory response, verified by unchanged somatic cell count (SCC) and lactate dehydrogenase (LDH), BSA, and IgG concentrations in milk, which are normally augmented during mastitis due to an opening of the blood-milk barrier. Similarly, intramammary meloxicam did not change the mRNA abundance of inflammatory factors in mammary gland tissue. As expected, quarters challenged with either dose of LPS showed increased leukocyte infiltration (SCC); increased LDH, BSA, IgG, Na, and Cl concentrations; and diminished K concentrations in milk. In contrast to our hypothesis, the addition of intramammary or intravenous meloxicam did not reduce these markers of mastitis in milk. Instead, intramammary meloxicam appeared to accelerate the SCC response to LPS, but only at the lower LPS dose. Moreover, the mRNA expression of inflammatory factors in mammary tissue was not modified by the intramammary application of meloxicam compared with the con-tralateral quarters that were challenged with LPS only. We demonstrated for the first time that intramammary meloxicam at a dose of 50 mg/quarter did not trigger an immune response in the mammary glands of dairy cows. At the doses we used, meloxicam (intramammary or systemic) did not lower inflammatory responses. The intramammary administration of meloxicam seemed to stimulate leukocyte recruitment into the milk in quarters challenged with a low dose of LPS. The integrity of the blood-milk barrier was not protected by meloxicam in LPS-stimulated quarters. This study provides the first indications that meloxicam does not limit the inflammatory response in the mammary gland, although it does not impair the mammary immune system.
Graphical Abstract Summary: We examined the possibility that metritis is associated with reduced uterine glandular development as a mechanism to explain lesser fertility in cows with early postpartum uterine disease. The development of uterine glands early postpartum was greater in the deep endometrial layer (cells closest to the myometrium). Cows with metritis had less glandular development and less cellular proliferation within the glandular epithelium at 1 month postpartum. Compared with early (1 month) postpartum, there was greater glandular development in later postpartum cows (during the breeding period) and a tendency for an effect of metritis on the extent of glandular development (reduced in metritic cows). We concluded that postpartum metritis reduces the development of glands during the first month postpartum and this effect may be maintained into the breeding period.
ContentsUterine and cervical size of Holstein dairy cows is reported among reasons for a decline in dairy cow fertility. Therefore, the objectives of this study were to (a) determine whether size of the cervix and uterus at 4 weeks postpartum impacted subsequent fertility at first service in Jersey cattle, (b) determine whether progesterone level at 4 weeks postpartum impacted cyclicity and (c) the association of the presence of corpus luteum and uterus and cervix size. Body condition scores at calving, presence of postpartum diseases, parity number and milk weights were taken from lactating Jersey dairy cows (N = 147) for 28 days postpartum. During the fourth week postpartum, a blood sample was obtained for progesterone concentration, and transrectal ultrasonography was performed by a high‐resolution ultrasound machine to determine cervical and uterine horn diameter, as well as ovarian structures measurements. Correcting for parity number, BCS at calving, presence of diseases and milk yield, cows with a cervix >2.54 ± 0.63 cm and uterine horn >2.25 ± 0.59 cm were less likely to become pregnant at first service (p = .04 andp = .003, respectively). The cows with larger cervix had a trend to be less likely to have a corpus luteum present at the 4th week of lactation (p = .067). Cows with larger uterine horn size were less likely to have a corpus luteum present at the 4th week of lactation (p = .015). It is concluded that a larger cervix and/or uterus during the postpartum was associated negatively with fertility and cyclicity in Jersey cows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.