This paper deals with the construction of l-stable implicit one-block methods for the solution of stiff initial value problems. The constructions are done using three different multi-block methods. The first multi-block method is composed using Generalized Backward Differentiation Formula (GBDF) and Backward Differentiation Formula (BDF), the second is composed using Reversed Generalized Adams Moulton (RGAM) and Generalized Adams Moulton (GAM) while the third is composed using Reversed Adams Moulton (RAM) and Adams Moulton (AM). Shift operator is then applied to the combination of the three multi-block methods in such a manner that the resultant block is a one-block method and self-starting. These one-block methods are up to order six and with at order ten. Numerical experiments show that they are good for solving stiff initial problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.