The solutions of many mathematical models resulting in stochastic differential equations are based on the assumption that the drift and the volatility coefficients were linear functions of the solutions. We formulated a model whose basic parameters could be derived from observations over discretized time intervals rather than the assumption that the drift and the volatility coefficients were linear functions of the solutions. We took into consideration the possibility of an asset gaining, losing or stable in a small interval of time instead of the assumption of the Binomial Asset pricing models that posited that the price could appreciate by a factor p or depreciate by a factor 1-p. A multi-dimensional stochastic differential equation was obtained whose drift is the expectation vector and the volatility the covariance of the stocks with respect to each other. The resulting system of stochastic differential equations was solved numerically using the Euler Maruyama Scheme for multi-dimensional stochastic differential equations through the use of a computer program written in MatLab. We obtained a realization of the evolutions of their prices over a chosen interval of time
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.